Reduced protein expression of the phosphodiesterases PDE4A4 and PDE4A8 in AIP mutation positive somatotroph adenomas.

来自 PUBMED

摘要:

Type 4 phosphodiesterases (PDE4s) of the large PDE enzyme superfamily have unique specificity for cAMP and may, therefore, be relevant for somatotroph tumorigenesis. Somatotroph adenomas typically overexpress PDEs probably as part of a compensatory mechanism to reduce cAMP levels. The rat PDE4A5 isoform (human homolog PDE4A4) interacts with the AIP protein, coded by a tumour suppressor gene mutated in a subgroup of familial isolated pituitary adenomas (FIPAs). PDE4A8 is the closest related isoform of PDE4A4. We aimed to evaluate the expression of both PDE4A4 and PDE4A8 in GH cells of AIP-mutated adenomas and compare their expression with that in GH cells from sporadic AIP-mutation negative GH-secreting adenomas, where we had shown previously that both PDE4A4 and PDE4A8 isoforms had been over-expressed. Confocal immunofluorescence analysis showed that both PDE4A8 and PDE4A4 had lower expression in AIP-mutated somatotropinoma samples compared to sporadic GH-secreting tumours (P < 0.0001 for both). Based on the association of low PDE4A4 and PDE4A8 expression with germline AIP-mutations positive samples we suggest that lack of AIP hinders the upregulation of PDE4A8 and PDE4A4 protein seen in sporadic somatotrophinomas. These data point to a unique disturbance of the cAMP-PDE pathway in AIP-mutation positive adenomas, which may help to explain their well-described poor response to somatostatin analogues.

收起

展开

DOI:

10.1016/j.mce.2018.04.014

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读