Evolutionary compromises to metabolic toxins: Ammonia and urea tolerance in Drosophila suzukii and Drosophila melanogaster.

来自 PUBMED

作者:

Belloni VGaleazzi ABernini GMandrioli MVersace EHaase A

展开

摘要:

The invasive pest Drosophila suzukii has evolved morphological and behavioural adaptations to lay eggs under the skin of fresh fruits. This results in severe damage to a wide range of small fruits. Drosophila suzukii females typically lay few eggs per fruit, preferring healthy fruits. Hence, larvae are exposed to a reduced amount of nitrogenous waste. Differently, the innocuous Drosophila melanogaster lays eggs on fermented fruits already infested by conspecifics, with larvae developing in a crowded environment with the accumulation of nitrogenous waste such as ammonia and urea. These compounds derive from nitrogen metabolism, protein degradation, and amino acids catabolism and are relatively toxic at high concentrations in an organism. The observed differences in oviposition site and larval ecological niche suggest that these species might differ in behavioural and physiological mechanisms used to cope with nitrogenous waste. We investigated how different concentrations of ammonia and urea affect oviposition and larval development in both species. Females and larvae of D. suzukii showed greater susceptibility to high concentrations of both compounds, with a dramatic decrease in the number of eggs laid and egg viability. Moreover, we tested the chemotactic response of third instar larvae to high concentrations of the compounds. Interestingly, ammonia resulted in a repulsive behaviour in respect of the control and urea groups. To better understand the pathways underlying these differences, we evaluated the effect on ornithine aminotransferase and glutathione-S-transferase, two enzymes involved in nitrogen metabolism and stress response that are expressed during larval development. Both ammonia and urea significantly reduced the expression of these enzymes in D. suzukii compared to D. melanogaster. This shows how the ecological shift of D. suzukii to fresh fruit is accompanied by less efficient detoxifying and excretory mechanisms, with important implications for evolutionary biology and applied research. Our data suggest that the ecological shift of D. suzukii to fresh fruit as oviposition substrate is accompanied by a reduced tolerance to metabolic toxins during larval development.

收起

展开

DOI:

10.1016/j.physbeh.2018.04.021

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(534)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读