Comparative analyses of the gut microbiota among three different wild geese species in the genus Anser.

来自 PUBMED

作者:

Wang WLiu YYang YWang ASharshov KLi YCao MMao PLi L

展开

摘要:

In this study, we characterized for the first time the gut microbiota of Greylag geese (Anser anser) using high-throughput 16S rRNA gene sequencing technology. The results showed that the phyla Firmicutes (78.55%), Fusobacteria (9.38%), Proteobacteria (7.55%), Bacteroidetes (1.82%), Cyanobacteria (1.44%), and Actinobacteria (0.61%) dominated the gut microbial communities in the Greylag geese. Then, the variations of gut microbial community structures and functions among the three geese species, Greylag geese, Bar-headed geese (Anser indicus), and Swan geese (Anser cygnoides), were explored. The greatest gut microbial diversity was found in Bar-headed geese group, while other two groups had the least. The dominant bacterial phyla across all samples were Firmicutes and Proteobacteria, but several characteristic bacterial phyla and genera associated with each group were also detected. At all taxonomic levels, the microbial community structure of Swan geese was different from those of Greylag geese and Bar-headed geese, whereas the latter two groups were less different. Functional KEGG categories and pathways associated with carbohydrate metabolism, energy metabolism, and amino acid metabolism were differentially expressed among different geese species. Taken together, this study could provide valuable information to the vast, and yet little explored, research field of wild birds gut microbiome.

收起

展开

DOI:

10.1002/jobm.201800060

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(562)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读