Improving treatment geometries in total skin electron therapy: Experimental investigation of linac angles and floor scatter dose contributions using Cherenkov imaging.

来自 PUBMED

作者:

Andreozzi JMBrůža PTendler IIMooney KEJarvis LACammin JLi HPogue BWGladstone DJ

展开

摘要:

The purpose of this study was to identify the optimal treatment geometry for total skin electron therapy (TSET) using a new optimization metric from Cherenkov image analysis, and to investigate the sensitivity of the Cherenkov imaging method to floor scatter effects in this unique treatment setup. Cherenkov imaging using an intensified charge coupled device (ICCD) was employed to measure the relative surface dose distribution as a 2D image in the total skin electron treatment plane. A 1.2 m × 2.2 m × 1 cm white polyethylene sheet was placed vertically at a source to surface distance (SSD) of 300 cm, and irradiated with 6 MeV high dose rate TSET beams. The linear accelerator coordinate system used stipulates 0° is the bottom of the gantry arc, and progresses counterclockwise so that gantry angle 270° produces a horizontal beam orthogonal to the treatment plane. First, all unique pairs of treatment beams were analyzed to determine the performance of the currently recommended symmetric treatment angles (±20° from the horizontal), compared to treatment geometries unconstrained to upholding gantry angle symmetry. This was performed on two medical linear accelerators (linacs). Second, the extent of the floor scatter contributions to measured surface dose at the extended SSD required for TSET were imaged using three gantry angles of incidence: 270° (horizontal), 253° (-17°), and 240° (-30°). Images of the surface dose profile at each angle were compared to the standard concrete floor when steel plates, polyvinyl chloride (PVC), and solid water were placed on the ground at the base of the treatment plane. Postprocessing of these images allowed for comparison of floor material-based scatter profiles with previously published simulation results. Analysis of the symmetric treatment geometry (270 ± 20°) and the identified optimal treatment geometry (270 + 23° and 270 - 17°) showed a 16% increase in the 90% isodose area for the latter field pair on the first linac. The optimal asymmetric pair for the second linac (270 + 25° and 270 - 17°) provided a 52% increase in the 90% isodose area when compared to the symmetric geometry. Difference images between Cherenkov images captured with test materials (steel, PVC, and solid water) and the control (concrete floor) demonstrated relative changes in the two-dimensional (2D) dose profile over a 1 × 1.9 m region of interest (ROI) that were consistent with published simulation data. Qualitative observation of the residual images demonstrates localized increases and decreases with respect to the change in floor material and gantry angle. The most significant changes occurred when the beam was most directly impinging the floor (gantry angle 240°, horizontal -30°), where the PVC floor material decreased scatter dose by 1-3% in 7.2% of the total ROI area, and the steel plate increased scatter dose by 1-3% in 7.0% of the total ROI area. An updated Cherenkov imaging method identified asymmetric, machine-dependent TSET field angle pairs that provided much larger 90% isodose areas than the commonly adopted symmetric geometry suggested by Task Group 30 Report 23. A novel demonstration of scatter dose Cherenkov imaging in the TSET field was established.

收起

展开

DOI:

10.1002/mp.12917

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(116)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读