PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside.
摘要:
Individuals with breast and ovarian cancer susceptibility gene 1 (BRCA1) or BRCA2 germline mutations have a significantly increased lifetime risk for breast and ovarian cancers. BRCA-mutant cancer cells have abnormal homologous recombination (HR) repair of DNA. In these tumors, the base excision repair (BER) pathway is important for cell survival. The poly(adenosine diphosphate-ribose) polymerase (PARP) enzymes play a key role in BER, and PARP inhibitors are effective in causing cell death in BRCA-mutant cells while sparing normal cells-a concept called synthetic lethality. PARP inhibitors are the first cancer therapeutics designed to exploit synthetic lethality. Recent clinical trials in BRCA-mutant, metastatic breast cancer demonstrated improved outcomes with single-agent PARP inhibitors (olaparib and talazoparib) over chemotherapy. However, resistance to PARP inhibitors remains a challenge. Primarily due to myelosuppression, the combination of PARP inhibitors with chemotherapy has been difficult. Novel combinations with chemotherapy, immunotherapy, and other targeted therapies are being pursued. In this review, the authors discuss current knowledge of PARP inhibitors in BRCA-mutant breast cancer and potential future directions for these agents. Cancer 2018;124:2498-506. © 2018 American Cancer Society.
收起
展开
DOI:
10.1002/cncr.31307
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(1104)
参考文献(62)
引证文献(58)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无