Trunk muscle activation patterns during walking among persons with lower limb loss: Influences of walking speed.

来自 PUBMED

作者:

Butowicz CMAcasio JCDearth CLHendershot BD

展开

摘要:

Persons with lower limb amputation (LLA) walk with altered trunk-pelvic motions. The underlying trunk muscle activation patterns associated with these motions may provide insight into neuromuscular control strategies post LLA and the increased incidence of low back pain (LBP). Eight males with unilateral LLA and ten able-bodied controls (CTR) walked over ground at 1.0 m/s, 1.3 m/s, 1.6 m/s, and self-selected speeds. Trunk muscle onsets/offsets were determined from electromyographic activity of bilateral thoracic (TES) and lumbar (LES) erector spinae. Trunk-pelvic kinematics were simultaneously recorded. There were no differences in TES onset times between groups; however, LLA demonstrated a second TES onset during mid-to-terminal swing (not seen in CTR), and activation for a larger percentage of the gait cycle. LLA (vs. CTR) demonstrated an earlier onset of LES and activation for a larger percentage of the gait cycle at most speeds. LLA walked with increased frontal plane trunk ROM, and a more in-phase inter-segmental coordination at all speeds. These data collectively suggest that trunk neuromuscular control strategies secondary to LLA are driven by functional needs to generate torque proximally to advance the affected limb during gait, though this strategy may have unintended deleterious consequences such as increasing LBP risk over time.

收起

展开

DOI:

10.1016/j.jelekin.2018.03.006

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(117)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读