Evaluation of the outcome of CT and MR imaging in pediatric patients with bilateral sensorineural hearing loss.

来自 PUBMED

摘要:

To evaluate the clinically relevant abnormalities as visualized on CT and MR imaging in children with symmetric and asymmetric bilateral sensorineural hearing loss (SNHL), in relation to age and the severity of hearing loss. Retrospective cohort study. Tertiary referral otology and audiology center. From January 2006 until January 2016, a total of 207 children diagnosed with symmetric and asymmetric bilateral SNHL were included. They underwent CT and/or MR imaging for the evaluation of the etiology of their hearing loss. Radiologic abnormalities associated with SNHL. 302 scans were performed in 207 children (median age of 0.8 years old) with bilateral SNHL. The most frequently identified cause of bilateral SNHL was a malformation of the labyrinth. The combined diagnostic yield of CT and MR imaging was 32%. The diagnostic yield of MR (34%) was considerably higher than that of CT (20%). We found a higher rate of abnormalities in children with profound hearing loss (41%) compared to milder hearing loss (8-29%), and in asymmetric SNHL (52%) compared to symmetric SNHL (30%). Imaging is essential in the etiologic evaluation of children with bilateral SNHL. The highest diagnostic yield is found in children with bilateral asymmetric SNHL or profound SNHL. Based on our findings, MR is the primary imaging modality of choice in the etiological evaluation of children with bilateral SNHL because of its high diagnostic yield.

收起

展开

DOI:

10.1016/j.ijporl.2018.02.022

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(197)

参考文献(0)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读