A multi-trait Bayesian method for mapping QTL and genomic prediction.

来自 PUBMED

作者:

Kemper KEBowman PJHayes BJVisscher PMGoddard ME

展开

摘要:

Genomic prediction and quantitative trait loci (QTL) mapping typically analyze one trait at a time but this may ignore the possibility that one polymorphism affects multiple traits. The aim of this study was to develop a multivariate Bayesian approach that could be used for simultaneously elucidating genetic architecture, QTL mapping, and genomic prediction. Our approach uses information from multiple traits to divide markers into 'unassociated' (no association with any trait) and 'associated' (associated with one or more traits). The effect of associated markers is estimated independently for each trait to avoid the assumption that QTL effects follow a multi-variate normal distribution. Using simulated data, our multivariate method (BayesMV) detected a larger number of true QTL (with a posterior probability > 0.9) and increased the accuracy of genomic prediction compared to an equivalent univariate method (BayesR). With real data, accuracies of genomic prediction in validation sets for milk yield traits with high-density genotypes were approximately equal to those from equivalent single-trait methods. BayesMV tended to select a similar number of single nucleotide polymorphisms (SNPs) per trait for genomic prediction compared to BayesR (i.e. those with non-zero effects), but BayesR selected different sets of SNPs for each trait, whereas BayesMV selected a common set of SNPs across traits. Despite these two dramatically different estimates of genetic architecture (i.e. different SNPs affecting each trait vs. pleiotropic SNPs), both models indicated that 3000 to 4000 SNPs are associated with a trait. The BayesMV approach may be advantageous when the aim is to develop a low-density SNP chip that works well for a number of traits. SNPs for milk yield traits identified by BayesMV and BayesR were also found to be associated with detailed milk composition. The BayesMV method simultaneously estimates the proportion of SNPs that are associated with a combination of traits. When applied to milk production traits, most of the identified SNPs were associated with all three traits (milk, fat and protein yield). BayesMV aims at exploiting pleiotropic QTL and selects a small number of SNPs that could be used to predict multiple traits.

收起

展开

DOI:

10.1186/s12711-018-0377-y

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(518)

参考文献(34)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读