Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering.

来自 PUBMED

作者:

Hussein KHSaleh TAhmed EKwak HHPark KMYang SRKang BJChoi KYKang KSWoo HM

展开

摘要:

Whole kidney decellularization is a promising approach in regenerative medicine for engineering a functional organ. The reaction of the potential host depends on the biocompatibility of these decellularized constructs. Despite the proven ability of decellularized kidney scaffolds to guide cell attachment and growth, little is known about biocompatibility and hemocompatibility of these scaffolds. Our aim is to prepare decellularized kidneys of a clinically relevant size and evaluate its biocompatibility and hemocompatibility. Porcine kidneys were cannulated via the renal artery, and then perfused with 0.1% sodium dodecyl sulfate solution. Hematoxylin and eosin as well as DAPI staining confirmed cellular clearance from native kidneys in addition to preservation of the microstructure. SEM confirmed the absence of any cellular content within the scaffold, which is maintained in a well-organized 3D architecture. Decellularized kidneys retained the intact renal vasculature upon examination with contrast radiography. The essential structural extracellular matrix molecules were well-preserved. Scaffolds were susceptible to enzymatic degradation upon collagenase treatment. Scaffolds showed a good hemocompatibility when exposed to porcine blood. Decellularization was efficient to remove 97.7% of DNA from native kidneys in addition to the immunogenic and pathogenic antigens. Scaffolds did not induce the human immune response in vitro. Decellularized kidneys were non-cytotoxic to pig kidney cells (PKs). PKs were able to grow and proliferate within the decellularized renal scaffolds with maintaining a higher function than cells grown as monolayers. Thus, we have developed a rapid decellularization technique for generating biocompatible kidney scaffolds that represents a step toward development of a transplantable organ. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2034-2047, 2018.

收起

展开

DOI:

10.1002/jbm.a.36407

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(681)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读