High diversity of genes and plasmids encoding resistance to third-generation cephalosporins and quinolones in clinical Escherichia coli from commercial poultry flocks in Italy.
The aim was to investigate occurrence and diversity of plasmid-mediated resistance to third-generation cephalosporins (3GC) and quinolones in clinical Escherichia coli from 200 industrial poultry farms across Italy. E. coli was isolated from colibacillosis lesions in turkeys (n = 109), broilers (n = 98) and layers (n = 22) between 2008 and 2012. 3GC-resistant isolates were screened for extended-spectrum and AmpC β-lactamase (ESBL/AmpC), while all isolates were tested for plasmid-mediated quinolone resistance (PMQR) genes. ESBL/AmpC- and PMQR-positive isolates were typed by pulsed-field gel electrophoresis and antimicrobial susceptibility testing, and their plasmids were characterised by replicon typing, multilocus sequence typing, restriction fragment length polymorphism and conjugation. EBSL/AmpC genes (blaCTX-M-1, blaCTX-M-14, blaCTX-M-2, blaSHV-12 and blaCMY-2) were detected in 7%, 9% and 4% of isolates from turkeys, broilers and layers, respectively. We identified seven ESBL/AmpC-encoding plasmid types, usually conjugative (78%), with a marked prevalence of IncI1/pST3 plasmids carrying blaCTX-M-1. PMQR occurred less frequently among isolates from turkeys (0.9%) compared to those from broilers (5%) and layers (4%). The PMQR genes qnrS, qnrB19 and oqxA/B were located on three plasmid types and two non-typeable plasmids, mostly (85%) conjugative. ESBL/AmpC- and PMQR-positive isolates were genetically unrelated and 64% of them were additionally resistant to aminoglycosides, sulfonamides and tetracyclines. Our data show that 3GC- and quinolone-resistant clinical E. coli in Italian poultry production represent a highly diverse population often resistant to most antimicrobials available for poultry. These findings underline the crucial need to develop new strategies for prevention and control of colibacillosis.
Niero G
,Bortolaia V
,Vanni M
,Intorre L
,Guardabassi L
,Piccirillo A
... -
《-》
Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe.
Extended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains of Escherichia coli were investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n = 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistant E. coli isolates and 355 (33%) E. coli isolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistant E. coli isolates carried the following ESBL genes: blaCTX-M-1 (n = 39 isolates), blaCTX-M-15 (n = 25), blaCTX-M-24 (n = 4), blaTEM-52 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 2), blaSHV-12 (n = 2), blaCTX-M-8 (n = 1), blaCTX-M-25 (n = 1), blaCTX-M-28 (n = 1), and an unspecified gene (n = 1). Forty-seven (31%) cefotaxime-resistant E. coli isolates carried the blaCMY-2 AmpC beta-lactamase gene. Sixty-two (17%) of the E. coli isolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genes qnrS1 (n = 54), qnrB19 (n = 4), qnrS1 and qnrB19 (n = 2), qnrS2 (n = 1), and aac(6')-Ib-cr (n = 1). Eleven isolates from the Czech Republic (n = 8) and Serbia (n = 3) were identified to be CTX-M-15-producing E. coli clone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positive E. coli isolates were determined, with ST58 (n = 15), ST10 (n = 14), and ST131 (n = 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positive E. coli isolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.
Jamborova I
,Dolejska M
,Vojtech J
,Guenther S
,Uricariu R
,Drozdowska J
,Papousek I
,Pasekova K
,Meissner W
,Hordowski J
,Cizek A
,Literak I
... -
《-》
Host-Specific Patterns of Genetic Diversity among IncI1-Iγ and IncK Plasmids Encoding CMY-2 β-Lactamase in Escherichia coli Isolates from Humans, Poultry Meat, Poultry, and Dogs in Denmark.
CMY-2 is the most common plasmid-mediated AmpC β-lactamase in Escherichia coli isolates of human and animal origin. The aim of this study was to elucidate the epidemiology of CMY-2-producing E. coli in Denmark. Strain and plasmid relatedness was studied in 93 CMY-2-producing clinical and commensal E. coli isolates collected from 2006 to 2012 from humans, retail poultry meat, broilers, and dogs. Multilocus sequence typing (MLST), antimicrobial susceptibility testing, and conjugation were performed in conjunction with plasmid replicon typing, plasmid multilocus sequence typing (pMLST), restriction fragment length polymorphism (RFLP), and sequencing of selected blaCMY-2-harboring plasmids. MLST revealed high strain diversity, with few E. coli lineages occurring in multiple host species and sample types. blaCMY-2 was detected on plasmids in 83 (89%) isolates. Most (75%) of the plasmids were conjugative and did not (96%) cotransfer resistance to antimicrobials other than cephalosporins. The main replicon types identified were IncI1-Iγ (55%) and IncK (39%). Isolates from different host species mainly carried distinct plasmid subtypes. Seven of the 18 human isolates harbored IncI1-Iγ/sequence type 2 (ST2), IncI1-Iγ/ST12, or IncK plasmids highly similar to those found among animal isolates, even though highly related human and animal plasmids differed by nonsynonymous single nucleotide polymorphisms (SNPs) or insertion sequence elements. This study clearly demonstrates that the epidemiology of CMY-2 can be understood only by thorough plasmid characterization. To date, the spread of this β-lactam resistance determinant in Denmark is mainly associated with IncK and IncI1-Iγ plasmids that are generally distributed according to host-specific patterns. These baseline data will be useful to assess the consequences of the increasing human exposure to CMY-2-producing E. coli via animal sources.
CMY-2 is the most common plasmid-mediated AmpC β-lactamase in Escherichia coli This β-lactamase is poorly inhibited by clavulanic acid and confers resistance to cephamycins, third-generation cephalosporins, and aztreonam. Furthermore, resistance to carbapenems has been reported in E. coli as a result of production of plasmid-encoded CMY-2 β-lactamase in combination with decreased outer membrane permeability. The gene encoding CMY-2 generally resides on transferable plasmids belonging to different incompatibility groups. The prevalence of CMY-2-mediated cephalosporin resistance in E. coli varies significantly depending on the geographical region and host. This study demonstrates that the epidemiology of CMY-2 can be understood only by thorough plasmid characterization. To date, the spread of this β-lactam resistance determinant in Denmark is mainly associated with IncK and IncI1-Iγ plasmids, which are generally distributed according to host-specific patterns. These data will be useful to assess the consequences of the increasing human exposure to CMY-2-producing E. coli via animal sources.
Hansen KH
,Bortolaia V
,Nielsen CA
,Nielsen JB
,Schønning K
,Agersø Y
,Guardabassi L
... -
《-》