TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance.
摘要:
Multidrug resistance (MDR) has become a very serious problem in cancer therapy. To effectively reverse MDR in tumor treatments, a new pH-sensitive nano drug delivery system (NDDS) composed of mesoporous silica nanoparticles (MSNs) and d-a-tocopheryl poly-ethylene glycol 1000 succinate (TPGS) copolymers was synthesized to deliver doxorubicin (DOX) into drug-resistant breast cancer cell line (MCF-7/ADR). DOX@MSNs-TPGS were characterized to have a single peak size distribution, high DOX loading efficiency and a pH-dependent drug release profile. MSNs-TPGS were internalized via caveolae, clathrin-mediated endocytosis and energy-dependent cellular uptake. The DOX@MSNs-TPGS exhibited 10-fold enhanced cell killing potency compared to free DOX and DOX@MSNs. The enhanced MDR reversal effect was ascribed to the higher amount of cellular uptake of DOX@MSNs-TPGS in MCF-7/ADR cells than that of free DOX and DOX@MSNs, as a result of the inhibition of P-gp mediated drug efflux by TPGS. In vivo studies of NDDS in tumor-bearing mice showed that DOX@MSNs-TPGS displayed better efficacy against MDR tumors in mice and reached the tumor site more effectively than DOX and DOX@MSNs, with minimal toxicity. These results suggest DOX@MSNs-TPGS developed in this study have promising applications to overcome drug resistance in tumor treatments.
收起
展开
DOI:
10.1016/j.msec.2017.11.040
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(1600)
参考文献(0)
引证文献(11)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无