Chemical speciation and risk assessment of Cu and Zn in biochars derived from co-pyrolysis of pig manure with rice straw.
摘要:
Pig manure has been utilized as a good feedstock to produce biochar. However, the pig manure-derived biochar from intensive pig cultivation contains high levels of total and bioavailable heavy metals. In this study, the co-pyrolysis of pig manure with other biomass (e.g. rice straw) at 300-700 °C was investigated to solve the above-mentioned topic. The ammonium acetate (CH3COONH4), Tessier sequential extraction procedure and hydrogen peroxide were adopted to evaluate the bioavailability, chemical speciation, and potential risk of Cu and Zn in the biochars. Results showed that the addition of rice straw significantly reduced the concentrations of total, exchangeable and carbonate-associated Cu and Zn in the biochars compared to the single pig manure biochars. Co-pyrolysis of pig manure with rice straw at a mass ratio of 1:3 and at 600 °C could be most effective to reduce the concentrations of CH3COONH4-extractable and potential released Cu and Zn in the biochars. In conclusion, the co-pyrolysis process is a feasible management for the safe disposal of metal-polluted pig manure in an attempt to reduce the bioavailability and potential risk of heavy metals at relatively high pyrolysis temperatures.
收起
展开
DOI:
10.1016/j.chemosphere.2018.02.138
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(233)
参考文献(0)
引证文献(5)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无