Dosimetric assessment of an air-filled balloon applicator in HDR vaginal cuff brachytherapy using the Monte Carlo method.

来自 PUBMED

作者:

Jiang HBadkul RPokhrel D

展开

摘要:

As an alternative to cylindrical applicators, air-inflated balloon applicators have been introduced into high-dose-rate (HDR) vaginal cuff brachytherapy to achieve sufficient dose to the vagina mucosa as well as to spare organs at risk, mainly the rectum and bladder. Commercial treatment planning systems which employ formulae in the AAPM Task Group No. 43 (TG 43) report do not take into account tissue inhomogeneity. Consequently, the low-density air in a balloon applicator induces different doses delivered to the mucosa from planned by these planning systems. In this study, we investigated the dosimetric effects of the air in a balloon applicator using the Monte Carlo (MC) method. The thirteen-catheter Capri™ applicator by Varian™ for vaginal cuff brachytherapy was modeled together with the Ir-192 radioactive source for the microSelectron™ Digital (HDR-V3) afterloader by Elekta™ using the MCNP MC code. The validity of charged particle equilibrium (CPE) with an air balloon present was evaluated by comparing the kerma and the absorbed dose at various distances from the applicator surface. By comparing MC results with and without air cavity present, dosimetric effects of the air cavity were studied. Clinical patient cases with optimized multiple Ir-192 source dwell positions were also explored. Four treatment plans by the Oncentra Brachy™ treatment planning system were re-calculated with MCNP. CPE fails in the vicinity of the air-water interface. One millimeter beyond the air-water boundary the kerma and the absorbed dose are equal (0.2% difference), regardless of air cavity dimensions or iridium source locations in the balloon. The air cavity results in dose increase, due to less photon absorption in the air than in water or solid materials. The extent of the increase depends on the diameter of the air balloon. The average increment is 3.8%, 4.5% and 5.3% for 3.0, 3.5, and 4.0 cm applicators, respectively. In patient cases, the dose to the mucosa is also increased with the air cavity present. The point dose difference between Oncentra Brachy and MC at 5 mm prescription depth is 8% at most and 5% on average. Except in the vicinity of the air-mucosa interface, the dosimetric difference is not significant enough to mandate tissue inhomogeneity correction in HDR treatment planning.

收起

展开

DOI:

10.1002/acm2.12298

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(658)

参考文献(9)

引证文献(1)

来源期刊

Journal of Applied Clinical Medical Physics

影响因子:2.241

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读