-
Effects of MicroRNA-206 on Osteosarcoma Cell Proliferation, Apoptosis, Migration and Invasion by Targeting ANXA2 Through the AKT Signaling Pathway.
This study aimed to investigate the mechanism by which microRNA-206 (miR-206) affects the proliferation, apoptosis, migration and invasion of osteosarcoma (OS) cells by targeting ANXA2 via the AKT signaling pathway.
A total of 132 OS tissues and 120 osteochondroma tissues were examined in this study. The targeting relationship between miR-206 and ANXA2 was verified with a dual-luciferase reporter assay. The miR-206 expression and ANXA2, AKT, PARP, FASN, Survivin, Bax, Mcl-1 and Bcl-1 mRNA and protein expression in the above two groups were examined by qRT-PCR and western blotting. The cultured OS cells were divided into 6 groups: a blank group, negative control (NC) group, miR-206 mimic group, miR-206 inhibitor group, si-ANXA2 group and miR-206 inhibitor + si-ANXA2 group. Cell cycle and apoptosis were assessed by flow cytometry, cell migration was examined with a wound-healing assay, and cell invasion was assessed with a Transwell assay. Pearson correlation analysis was used to determine the correlation between ANXA2 mRNA expression and miR-206 expression in OS.
OS tissues exhibited increased mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-2; decreased miR-206 expression; and decreased Bax mRNA and protein expression. ANXA2 mRNA expression was strongly negatively correlated with miR-206 expression in OS. ANXA2 was found to be a miR-206 target gene. In the miR-206 mimic group and the si-ANXA2 group, the mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-1 decreased markedly, cell proliferation was inhibited, apoptosis was promoted, higher cell growth in G1 phase and decreased growth in S phase was detected, and decreased cell migration and invasion were observed compared with those in the blank group.
The current results demonstrate that miR-206 overexpression inhibits OS cell proliferation, migration and invasion and promotes apoptosis through targeting ANXA2 by blocking the AKT signaling pathway.
Pan BL
,Tong ZW
,Wu L
,Pan L
,Li JE
,Huang YG
,Li SD
,Du SX
,Li XD
... -
《-》
-
Mechanism of miR-122-5p regulating the activation of PI3K-Akt-mTOR signaling pathway on the cell proliferation and apoptosis of osteosarcoma cells through targeting TP53 gene.
Li KW
,Wang SH
,Wei X
,Hou YZ
,Li ZH
... -
《-》
-
microRNA-383 suppresses the PI3K-AKT-MTOR signaling pathway to inhibit development of cervical cancer via down-regulating PARP2.
This study aims to evaluate the effect of the regulatory relationship between microRNA-383 (miR-383) and PARP2 in the cell migration and invasion in human with cervical cancer (CC) via the PI3K-AKT-MTOR signaling pathway. Cancerous tissues and corresponding paracancerous tissues were collected from 115 patients with CC. The positive expression rate of PARP2 was detected by immunohistochemistry. HeLa cells with highest miR-383 expression were selected and assigned into the blank, negative control (NC), miR-383 mimic, miR-383 inhibitor, si-PARP2, and miR-383 inhibitor + si-PARP2 groups. qRT-PCR and Western blot were performed to evaluate the expression of miR-383, PI3K, AKT, mTOR, PARP2, and p70S6K. MTT assay were utilized to measure cell viability. Transwell assay were applied to evaluate cell invasion and metastasis. Dual luciferase reporter assay identified that PARP2 is a target gene of miR-383. Cancerous tissues manifested higher expression of PI3K, AKT, mTOR, PARP2, and p70S6K but lower miR-383 expression than paracancerous tissues. Compared with the blank and NC groups, the miR-383 mimic and si-PARP2 groups had decreased expression of PI3K, AKT, mTOR, PARP2, and p70S6K mRNA and protein. In the miR-383 mimic and si-PARP2 groups, the cell viability, migration, and invasion were descended, in comparison to the blank and NC groups. All above parameters showed an opposite trend in the miR-383 inhibitor group when compared with the blank and NC groups. This study demonstrates that miR-383 could down-regulate PARP2 to protect against CC by inhibiting PI3K-AKT-MTOR signaling pathway.
Teng P
,Jiao Y
,Hao M
,Tang X
... -
《-》
-
Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway.
Osteosarcoma (OS) is the most common histological form of primary bone cancer. It is most prevalent in teenagers and young adults. The present study aims at exploring the regulatory effect of microRNA-340 (miR-340) on OS cell proliferation, invasion, migration, and apoptosis via regulating the Notch signaling pathway by targeting β-catenin (cadherin-associated protein) 1 (CTNNB1). OS tissues belonging to 45 patients and normal femoral head tissues of 45 amputees were selected. Cells were allocated to different groups. In situ hybridization was performed to determine the positive rate of miR-340 expression while immunohistochemistry was used to determine that of CTNNB1 and B-cell lymphoma 2 (Bcl-2). We used a series of experiments to measure the expressions of related factors and assess rates of cell proliferation, migration, invasion, cycle, and apoptosis respectively. Our results show that miR-340 was expressed a higher level in normal tissue than OS tissue. Expression of Notch, CTNNB1, hairy and enhancer of split 1 (Hes1), Bcl-2, Runt-related transcription factor 2 (Runx2), and osteocalcin increased and that of miR-340, Bcl-2 interacting mediator of cell death (BIM), and Bcl-2 associated protein X (Bax) decreased in OS tissues. U-2OS cell line had the highest miR-340 expression. We also found that the up-regulation of miR-340 had increased expression of miR-340, BIM, and Bax but decreased expression of Notch, CTNNB1, Hes1, Bcl-2, Runx2, and osteocalcin. Up-regulation of miR-340p lead to increased cell apoptosis, suppressed cell proliferation, migration, and invasion. Our study demonstrates that overexpression of miR-340 could suppress OS cell proliferation, migration, and invasion as well as promoting OS cell apoptosis by inactivating the Notch signaling pathway via down-regulating CTNNB1. Functional miR-340 overexpression might be a future therapeutic strategy for OS.
Pan BL
,Wu L
,Pan L
,Yang YX
,Li HH
,Dai YJ
,He ZQ
,Tan L
,Huang YG
,Tong ZW
,Liao JL
... -
《-》
-
Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC).
NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis.
The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis.
These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC.
Zhou Y
,Li S
,Li J
,Wang D
,Li Q
... -
《-》