Carboxymethylated chitosan protects Schwann cells against hydrogen peroxide-induced apoptosis by inhibiting oxidative stress and mitochondria dependent pathway.

来自 PUBMED

作者:

He BWu FFan LLi XHLiu YLiu YJDing WJDeng MZhou Y

展开

摘要:

Carboxymethylated chitosan (CMCS) has many beneficial effects, including anti-oxidant and anti-apoptotic actions. However, the mechanisms by which CMCS protect against oxidative stress induced damage to Schwann cells (SCs) remains unclear. The present study aimed to investigate the mechanism by which CMCS protects SCs against hydrogen peroxide (H2O2) induced damage. H2O2 was used to establish a model of oxidative stress injury in SCs to mimic the development of nerve injury in vitro. Different concentrations (50, 100 and 200 µg/ml) of CMCS were added to test whether CMCS was capable of protecting SCs from H2O2 induced damage. MTT, LDH release and Annexin V/FITC assays were then performed. Levels of reactive oxygen species were detected using a reactive oxygen species assay kit, the mitochondrial membrane potential (ΔΨm) of SCs was analyzed by rhodamine123 fluorescence staining, the synthesis of Bcl-2, Bax, cytochrome c and caspase-3 were analyzed by real-time PCR and Western blot analysis. The results showed that CMCS protected SCs from apoptosis, decreased LDH release and enhanced cell viability, also decreased reactive oxygen species levels and increased ΔΨm. Additional experiments demonstrated that CMCS could decrease protein expression of Bax, cytochrome c and caspase-3, while promote Bcl-2 protein expression induced by H2O2. Taken together, the finding of this study indicated that CMCS prevented H2O2-induced damage to SCs through the mitochondrial dependent pathway.

收起

展开

DOI:

10.1016/j.ejphar.2018.02.024

被引量:

12

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(814)

参考文献(0)

引证文献(12)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读