Increased N6-methyladenosine causes infertility is associated with FTO expression.
The N6-methyladenosine (m6A) modification plays a central role in epigenetic regulation of the mammalian transcriptome. m6A can be demethylated by the fat mass- and obesity-associated (FTO) protein and the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) protein. Much less is known about that whether m6A content is involved in POI (premature ovarian insufficiency) disease. In this case-controlled study, 69 POI and 53 tubal occlusion patients were recruited from the reproduction centers in our hospital. For the POI animal model experiment, ovarian tissue was obtained from ten POI and nine healthy mice. An m6A test kit was developed to determine the m6A content in the RNA, and qPCR and western blot were used to examine the mRNA and protein expression levels of FTO and ALKBH5. FACS was used to measure the levels of proliferation and apoptosis, and siRNA was used to establish FTO and ALKBH5 knockdown cell lines. Our results showed that the m6A content in the RNA from POI patients and POI mice was significantly higher than control groups and that POI was characterized by the content of m6A. The mRNA and protein expression levels of FTO were significantly lower in the POI patients than control group and were associated with a risk of POI. These data suggest that the decreased mRNA and protein expression levels of FTO may be responsible for the increase in m6A in POI, which may further increase the risk of complications of POI. High m6A should be investigated further as a novel potential biomarker of POI.
Ding C
,Zou Q
,Ding J
,Ling M
,Wang W
,Li H
,Huang B
... -
《-》
Decreased ALKBH5, FTO, and YTHDF2 in Peripheral Blood Are as Risk Factors for Rheumatoid Arthritis.
ALKBH5 (alkylation repair homolog protein 5), FTO (fat mass and obesity-associated protein), and RNA N6-methyladenosine (m6A) demethylase, are essential for the m6A mRNA modification. YTHDF2 (YT521-B homology domains 2) called m6A "readers" can recognize m6A modification. As the key enzymes of m6A methylation modification, ALKBH5, FTO, and YTHDF2 have been implicated in many diseases. However, little is known about the role of ALKBH5, FTO, and YTHDF2 in rheumatoid arthritis (RA). We measured the mRNA expression of ALKBH5, FTO, and YTHDF2 in RA patients and controls by quantitative real-time polymerase chain reaction, and the global m6A content was detected by an ELISA-like format. The mRNA expression of ALKBH5, FTO, and YTHDF2 in RA patients was further analyzed to investigate its correlations with disease activity. And, multivariate analysis (logistic regression) was used to analyze the risk factors. The mRNA expression of ALKBH5, FTO, and YTHDF2 in RA patients was significantly decreased compared to controls. The mRNA expression of ALKBH5 was significantly increased in RA patients that received regular treatment. The mRNA expression of FTO was associated with disease activity score 28 (DAS28), complement 3 (C3), immunoglobulin G (IgG), and lymphocyte-to-monocyte ratio (LMR), some common markers for RA disease activity. The mRNA expression of YTHDF2 was associated with RBC, L%, N%, NLR, and LMR. Furthermore, logistic regression analysis revealed that decreased expression of ALKBH5, FTO, and YTHDF2 in peripheral blood was a risk factor for RA. Moreover, the peripheral blood global m6A content was significantly increased in patients with RA compared to CON, and increased m6A contents negatively correlated with decreased mRNA expression of FTO. In conclusion, this study firstly demonstrates the critical role of ALKBH5, FTO, and YTHDF2 in RA, which provides novel insights into recognizing the pathogenesis of RA and a promising biomarker for RA.
Luo Q
,Gao Y
,Zhang L
,Rao J
,Guo Y
,Huang Z
,Li J
... -
《-》
M(6)A demethylase FTO-stabilized exosomal circBRCA1 alleviates oxidative stress-induced granulosa cell damage via the miR-642a-5p/FOXO1 axis.
Premature ovarian insufficiency (POI) is an important cause of female infertility and seriously impacts the physical and psychological health of patients. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exs, H-Exs) have exhibited protective effects on ovarian function with unclear mechanisms.
A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify POI-associated circRNAs and miRNAs. The relationship between HucMSC-derived exosomal circBRCA1/miR-642a-5p/FOXO1 axis and POI was examined by RT-qPCR, Western blotting, reactive oxygen species (ROS) staining, senescence-associated β-gal (SA-β-gal) staining, JC-1 staining, TEM, oxygen consumption rate (OCR) measurements and ATP assay in vivo and in vitro. RT-qPCR detected the expression of circBRCA1 in GCs and serum of patients with normal ovarian reserve function (n = 50) and patients with POI (n = 50); then, the correlation of circBRCA1 with ovarian reserve function indexes was analyzed.
Herein, we found that circBRCA1 was decreased in the serum and ovarian granulosa cells (GCs) of patients with POI and was associated with decreased ovarian reserve. H-Exs improved the disorder of the estrous cycles and reproductive hormone levels, reduced the number of atretic follicles, and alleviated the apoptosis and senescence of GCs in rats with POI. Moreover, H-Exs mitigated mitochondrial damage and reversed the reduced circBRCA1 expression induced by oxidative stress in GCs. Mechanistically, FTO served as an eraser to increase the stability and expression of circBRCA1 by mediating the m6A demethylation of circBRCA1, and exosomal circBRCA1 sponged miR-642a-5p to block its interaction with FOXO1. CircBRCA1 insufficiency aggravated mitochondrial dysfunction, mimicking FTO or FOXO1 depletion effects, which was counteracted by miR-642a-5p inhibition.
H-Exs secreted circBRCA1 regulated by m6A modification, directly sponged miR-642a-5p to upregulate FOXO1, resisted oxidative stress injuries in GCs and protected ovarian function in rats with POI. Exosomal circBRCA1 supplementation may be a general prospect for the prevention and treatment of POI.
Zhu X
,Li W
,Lu M
,Shang J
,Zhou J
,Lin L
,Liu Y
,Xing J
,Zhang M
,Zhao S
,Lu J
,Shi X
... -
《JOURNAL OF NANOBIOTECHNOLOGY》