Comparative analysis of C-type lectin domain proteins in the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae).

来自 PUBMED

作者:

Meng QZhang JHZhang HZhou GLNi RYZhao YNQin QLZou Z

展开

摘要:

Insects have a large family of C-type lectins involved in cell adhesion, pathogen recognition and activation of immune responses. In this study, 32 transcripts encoding C-type lectin domain proteins (CTLDPs) were identified from the Thitarodes xiaojinensis transcriptome. According to their domain structures, six CTLDPs with one carbohydrate-recognition domain (CRD) were classified into the CTL-S subfamily. The other 23 CTLDPs with two CRDs were grouped into the immulectin (IML) subfamily. The remaining three with extra regulatory domains were sorted into the CTL-X subfamily. Phylogenetic analysis showed that CTL-S and CTL-X members from different insects could form orthologous groups. In contrast, no T. xiaojinensis IML orthologues were found in other insects. Remarkable lineage-specific expansion in this subfamily was observed reflecting that these CTLDPs, as important receptors, have evolved diversified members in response to a variety of microbes. Prediction of binding ligands revealed that T. xiaojinensis, a cold-adapted species, conserved the ability of CRDs to combine with Ca2+ to keep its receptors from freezing. Comparative analysis of induction of CTLDP genes after different immune challenges indicated that IMLs might play critical roles in immune defenses. This study examined T. xiaojinensis CTLDPs and provides a basis for further studies of their characteristics.

收起

展开

DOI:

10.1111/1744-7917.12564

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(105)

参考文献(41)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读