Investigation of BRAF V600E detection approaches in papillary thyroid carcinoma.

来自 PUBMED

作者:

Chen DQi WZhang PZhang YLiu YGuan HWang L

展开

摘要:

The detection of BRAF V600E mutation in papillary thyroid carcinoma (PTC) may be helpful to offer diagnostic confirmation. Additionally, such detection may provide a targeted therapeutic approach for the radioactive iodine resistant patients to predict adverse outcomes. To compare the results of immunohistochemistry (IHC) method using the anti-BRAF V600E (VE1) antibody with the Quantitative real-time polymerase chain reaction (qPCR) approach in examining BRAF V600E mutation in PTC, we investigated the sensitivity and specificity of BRAF V600E (clone VE1) mouse monoclonal antibody in detecting the BRAF V600E mutation and correlated BRAF V600E mutation with clinicopathologic features in PTC. IHC and qPCR were performed in 40 cases of paraffin-embedded PTCs tissues. The association between BRAFV600E mutation and clinicopathologic features of PTC was assessed with the χ2 test. The concordance rate between IHC and qPCR analyses was 95% (38/40). The BRAF V600E (VE1) antibody has a sensitivity of 100% (34/34) and specificity of 66.67% (4/6) for detecting the mutation. Our study showed that there was no significant association of BRAF V600E mutation with the gender, age, tumor size and lymph node metastasis in PTCs. We may draw the conclusion that detection of BRAF V600E mutation by immunohistochemistry is highly sensitive and specific. Immunohistochemical detection of the mutated BRAF V600E protein in PTC may facilitate mutational analysis in the clinical setting.

收起

展开

DOI:

10.1016/j.prp.2017.09.001

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(365)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读