The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis.

来自 PUBMED

作者:

Li SMei ZHu HBZhang X

展开

摘要:

lncRNAs can exert many biological effects in several cancer types. MALAT1 is a kind of lncRNA which is greatly overexpressed in several tumors including non-small cell lung cancer (NSCLC). However, the mechanism of MALAT1 in NSCLC still remains unclear. In our current study, we concentrated on the biological mechanism of MALAT1 in NSCLC. It was observed that MALAT1 was significantly upregulated in five human NSCLC cells including A549, H23, H522, H1299, and H460 cells compared to normal bronchial epithelial cell line 16HBE cells. On the contrary, miR-124 was remarkably downregulated, which indicated a potential negative correlation between miR-124 and MALAT1. MALAT1 inhibition can increase miR-124 expression in A549 and H460 cells. In addition, miR-124 mimics were able to repress MALAT1 expression and miR124 inhibitors can promote MALAT1 levels. Then it was found that shMALAT1 can inhibit NSCLC cell proliferation, colony formation and apoptosis, which can be reversed by miR-124 inhibitors. Bioinformatic analysis predicted the correlation between miR-124 and MALAT1. In addition, STAT3 was found to be a novel mRNA target of miR-124. Downregulation of MALAT1 can inhibit NSCLC development by enhancing miR-124 and decreasing STAT3 expression. We speculated that MALAT1can act as a competing endogenous lncRNA (ceRNA) to modulate miR-124/STAT3 in NSCLC. Taken these together, we revealed that MALAT1/miR-124/STAT3 was involved in NSCLC development.

收起

展开

DOI:

10.1002/jcp.26325

被引量:

83

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(280)

参考文献(0)

引证文献(83)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读