Elevated Expression of Zinc Finger Protein 703 Promotes Cell Proliferation and Metastasis through PI3K/AKT/GSK-3β Signalling in Oral Squamous Cell Carcinoma.
Zinc finger protein 703 (ZNF703), initially identified as a novel oncogene in human breast cancer, is a member of the NET/NlZ family of zinc finger transcription factors. It is recognized that the overexpression of ZNF703 is associated with various types of human cancers, but the role and molecular mechanism of ZNF703 in oral squamous cell carcinoma (OSCC) are unknown.
ZNF703 expression levels were examined in OSCC tissues and non-cancerous tissues by qRT-PCR and immunohistochemistry (IHC). The molecular mechanisms of ZNF703 and its effects on cell growth and metastasis were explored in vitro and in vivo using the CCK8 assay, colony formation assay, cell cycle analysis, migration and invasion assays, wound-healing assay, western blotting and xenograft experiments in nude mice.
In this study, ZNF703 was found to be upregulated in OSCC tissues compared to that in normal tissues at both mRNA and protein levels, and its expression level was closely correlated with the overall survival of patients with OSCC. Silencing of the ZNF703 gene in OSCC cells significantly inhibited cell growth and metastasis in vitro and in vivo. Conversely, the overexpression of ZNF703 in OSCC cells promoted cancer growth and metastasis in vitro. Mechanistically, ZNF703 activated the PI3K/AKT/GSK-3β signalling pathway and its downstream effectors, thus regulating the cell cycle and epithelial-mesenchymal transition (EMT). Furthermore, the promotive effects of ZNF703 on cellular proliferation and metastasis could be rescued by LY294002 (a PI3K-specific inhibitor) and MK2206 (an Akt-specific inhibitor).
The results show that ZNF703 promotes cell growth and metastasis through PI3K/Akt/GSK-3β signalling in OSCC and that it may be a promising target in the treatment of patients with OSCC.
Wang H
,Deng X
,Zhang J
,Ou Z
,Mai J
,Ding S
,Huo S
... -
《-》
Erinacine Facilitates the Opening of the Mitochondrial Permeability Transition Pore Through the Inhibition of the PI3K/ Akt/GSK-3β Signaling Pathway in Human Hepatocellular Carcinoma.
Erinacine, which is extracted from the medicinal mushroom Hericium erinaceus, is known to play anticancer roles in human cancers. The following study aims to investigate the role of erinacine in the opening of the mitochondrial permeability transition pore (MPTP) in hepatocellular carcinoma (HCC) through the PI3K/Akt/GSK-3β signaling pathway and highlights the applicability of erinacine in HCC treatments.
HCC and paracancerous tissues were obtained from 85 HCC patients who've undergone surgical resection. Immunohistochemistry was adopted to detect positive expression of PI3K, Akt, and GSK-3β. Treatment of HepG-2 with LY294002 (an inhibitor of the PI3K/Akt/GSK-3β signaling pathway) and different concentration of erinacine was performed to determine the involvement of LY294002 in erinacine action. The expressions of PI3K, Akt, GSK-3β, CyclinD1, Vimentin, β-catenin, Bcl-2, E-cadherin, Bax, and caspase-9 were determined by RT-qPCR and Western blot analysis. Cell viability, colony formation rate, migration, invasion, cycle, and apoptosis were detected by MTT, colony formation, wound healing assay, Transwell assay, and flow cytometry, respectively. The size and weight of xenograft tumors were observed in nude mice. Mitochondrial membrane potential in HepG-2 was determined using laser scanning confocal microscopy following JC-1 staining. Mitochondrial Ca2+ indicator Rhod-2, AM was used to detect the changes of mitochondrial Ca2+, while western blot analysis was employed to detect the presence levels of cytochrome C (cyt-C).
The results revealed that PI3K, Akt, and GSK-3β were up-regulated in HCC tissues. Erinacine or LY294002 led to a decrease in mitochondrial membrane potential, increase in intracellular mitochondrial Ca2+, and the release of cyt-C in mitochondria. In addition, Erinacine was found to decrease the mitochondrial membrane potential, expression of PI3K, Akt, GSK-3β, CyclinD1, Vimentin, β-catenin, and Bcl-2, cell proliferation, colony formation ability, migration, invasion, and xenograft tumor size, while E-cadherin, Bax, and caspase-9 expression, and cell apoptosis were elevated in a dose-dependent manner. Erinacine also stimulated the effects of LY294002 on the HCC. Following the addition of 500 μM Erinacine and MPTP opening inhibitor CsA, we found that the mitochondrial membrane potential level increased, while mitochondrial Ca2+ and Cyt-C decreased from the mitochondria.
The results from the study demonstrated that erinacine induced MPTP opening, facilitates the release of cyt-C, and inhibited cell proliferation, migration, and invasion, while it promotes apoptosis by inactivating the PI3K/Akt/GSK-3β signaling pathway, preventing the progression of HCC.
Zhou LJ
,Mo YB
,Bu X
,Wang JJ
,Bai J
,Zhang JW
,Cheng AB
,Ma JH
,Wang YW
,Xie YX
... -
《-》