Effects of microRNA-136 on melanoma cell proliferation, apoptosis, and epithelial-mesenchymal transition by targetting PMEL through the Wnt signaling pathway.
The study aims to evaluate the effects of miR-136 on the proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) of melanoma cells by targetting premelanosome protein (PMEL) through the Wnt signaling pathway. After establishment of melanoma mouse models, melanoma (model group) and normal tissues (normal group) were collected. Immunohistochemistry was performed to determine PMEL protein concentration. Mouse melanoma cells were assigned into control, blank, negative control (NC), miR-136 mimics, miR-136 inhibitors, siRNA-PMEL, and miR-136 inhibitors + siRNA-PMEL, LiC1 (Wnt signaling pathway activator), and siRNA-PMEL+ LiCl groups. MTT, Scratch test, Transwell assay, and flow cytometry were performed to measure cell proliferation, migration, invasion, and apoptosis. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to evaluate miR-136, PMEL, β-catenin, Wnt3a, Bcl-2, Bax, Caspase, E-cadherin, and N-cadherin expressions. PMEL is highly expressed in melanoma tissues. MiR-136, Bax, Caspase, and E-cadherin expressions decreased in the model group, whereas PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions increased. Bax, Caspase, and E-cadherin expressions increased in the miR-136 mimics and siRNA-PMEL groups, whereas the expressions decreased in the miR-136 inhibitors group and LiC1 group. PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions, cell proliferation, migration, and invasion decreased, and the apoptosis rate inceased in the miR-136 mimics and siRNA-PMEL groups; whereas the tendencies were opposite to those in the miR-136 inhibitors group and LiC1 group. In the siRNA-PMEL+ LiCl group, PMEL expression decreased. These findings indicated that overexpression of miR-136 inhibits melanoma cell EMT, proliferation, migration, invasion, and promotes apoptosis by targetting PMEL through down-regulation of the Wnt signaling pathway.
Wang JJ
,Li ZF
,Li XJ
,Han Z
,Zhang L
,Liu ZJ
... -
《-》
MicroRNA-300 promotes apoptosis and inhibits proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway by targeting CUL4B in pancreatic cancer cells.
The study aims to verify the hypothesis that up-regulation of microRNA-300 (miR-300) targeting CUL4B promotes apoptosis and suppresses proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of pancreatic cancer cells by regulating the Wnt/β-catenin signaling pathway. Pancreatic cancer tissues and adjacent tissues were collected from 110 pancreatic cancer patients. Expression of miR-300, CUL4B, Wnt, β-catenin, E-cadherin, N-cadherin, Snail, GSK-3β, and CyclinD1 were detected using qRT-PCR and Western blot. CFPAC-1, Capan-1, and PANC-1 were classified into blank, negative control (NC), miR-300 mimics, miR-300 inhibitors, siRNA-CUL4B, and miR-300 inhibitors + siRNA-CUL4B groups. The proliferation, migration, invasion abilities, the cell cycle distribution, and apoptosis rates were measured in CCK-8 and Transwell assays. Pancreatic cancer tissues showed increased CUL4B expression but decreased miR-300 expression. When miR-300 was lowly expressed, CUL4B was upregulated which in-turn activated the Wnt/β-catenin pathway to protect the β-catenin expression and thus induce EMT. When miR-300 was highly expressed, CUL4B was downregulated which in-turn inhibited the Wnt/β-catenin pathway to prevent EMT. Weakened cell migration and invasion abilities and enhanced apoptosis were observed in the CUL4B group. The miR-300 inhibitors group exhibited an evident increase in growth rate accompanied the largest tumor volume. Smaller tumor volume and slower growth rate were observed in the miR-300 mimics and siRNA-CUL4B group. Our study concludes that lowly expressed miR-300 may contribute to highly expressed CUL4B activating the Wnt/β-catenin signaling pathway and further stimulating EMT, thus promoting proliferation and migration but suppressing apoptosis of pancreatic cancer cells.
Zhang JQ
,Chen S
,Gu JN
,Zhu Y
,Zhan Q
,Cheng DF
,Chen H
,Deng XX
,Shen BY
,Peng CH
... -
《-》