An NRG Oncology/GOG study of molecular classification for risk prediction in endometrioid endometrial cancer.
摘要:
The purpose of this study was to assess the prognostic significance of a simplified, clinically accessible classification system for endometrioid endometrial cancers combining Lynch syndrome screening and molecular risk stratification. Tumors from NRG/GOG GOG210 were evaluated for mismatch repair defects (MSI, MMR IHC, and MLH1 methylation), POLE mutations, and loss of heterozygosity. TP53 was evaluated in a subset of cases. Tumors were assigned to four molecular classes. Relationships between molecular classes and clinicopathologic variables were assessed using contingency tests and Cox proportional methods. Molecular classification was successful for 982 tumors. Based on the NCI consensus MSI panel assessing MSI and loss of heterozygosity combined with POLE testing, 49% of tumors were classified copy number stable (CNS), 39% MMR deficient, 8% copy number altered (CNA) and 4% POLE mutant. Cancer-specific mortality occurred in 5% of patients with CNS tumors; 2.6% with POLE tumors; 7.6% with MMR deficient tumors and 19% with CNA tumors. The CNA group had worse progression-free (HR 2.31, 95%CI 1.53-3.49) and cancer-specific survival (HR 3.95; 95%CI 2.10-7.44). The POLE group had improved outcomes, but the differences were not statistically significant. CNA class remained significant for cancer-specific survival (HR 2.11; 95%CI 1.04-4.26) in multivariable analysis. The CNA molecular class was associated with TP53 mutation and expression status. A simple molecular classification for endometrioid endometrial cancers that can be easily combined with Lynch syndrome screening provides important prognostic information. These findings support prospective clinical validation and further studies on the predictive value of a simplified molecular classification system.
收起
展开
DOI:
10.1016/j.ygyno.2017.10.037
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(157)
参考文献(35)
引证文献(41)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无