Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis.
This study aims to explore the relationship between PI3K/AKT/mTOR signaling pathway and autophagy of articular chondrocytes in rats with osteoarthritis (OA).
Rat articular chondrocytes were isolated and cultured, and then induced by protein inhibitors of PI3K/AKT/mTOR signaling pathway. Chondrocytes were assigned into blank group, IL-1β induction group (IL-1β group), PI3K inhibitor+IL-1β induction group (PI3Ki+IL-1β group), AKT inhibitor+IL-1β induction group (AKTi+IL-1β group) and mTOR inhibitor+IL-1β induction group (mTORi+IL-1β group). Cell proliferation activity was detected by MTT assay, cell cycle by flow cytometry and cell autophagy by monodansylcadaverine (MDC) staining. Autophagy rates were evaluated by GFP-LC3 fluorescence microscopy. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect mRNA expressions of autophagy-related genes (Atg5 and Atg7). Western blotting was utilized to detect expressions of autophagy markers (LC3, Beclin1 and p62) and of relevant proteins in the PI3K/AKT/mTOR signaling pathway.
The cell proliferation rate of the IL-1β group was lower than that of the blank group after cells were cultured for 24h, and the cell proliferation rates of the PI3Ki+IL-1β group, the AKTi+IL-1β group and the mTORi+IL-1β group were higher than those of the IL-1β group. In comparison with the blank group, cells in the IL-1β group were arrested at the G1 phase and decreased in the S phase, MDC positive staining cells were decreased with attenuated staining intensity, the autophagy rate was decreased, the mRNA expressions of Atg5 and Atg7 and the protein expressions of LC3, Beclin1 and p62 were significantly down-regulated. While in the groups of PI3Ki+IL-1β, AKTi+IL-1β and mTORi+IL-1β, haploid cells were reduced, coupled with an increased proportion of cells in the S phase and decreased proportion of cells in the G1 phase, the autophagy rate was increased, the mRNA expressions of Atg5 and Atg7 and the protein expressions of LC3, Beclin1 and p62 were significantly up-regulated. Compared with the blank group, the protein phosphorylation levels of PI3K, AKT and mTOR were elevated, while there were no significant difference observed in the total amount of PI3K, AKT and mTOR in the IL-1β group. Meanwhile, there were relatively low protein phosphorylation levels of PI3K, AKT and mTOR in the groups of PI3Ki+IL-1β, AKTi+IL-1β and mTORi+IL-1β.
Inflammation could inhibit the proliferation and cell cycle of rat chondrocytes and reduce the autophagy rate. Inhibition of PI3K/AKT/mTOR signaling pathway could promote the autophagy of articular chondrocytes and attenuate inflammation response in rats with OA.
Xue JF
,Shi ZM
,Zou J
,Li XL
... -
《-》
microRNA-206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3-kinase/protein kinase B-mTOR pathway by targeting insulin-like growth factor-1.
microRNA (miR) has been shown to be involved in the treatment of diseases such as osteoarthritis (OA). This study aims to investigate the role of miR-206 in regulating insulin-like growth factor-1 (IGF-1) in chondrocyte autophagy and apoptosis in an OA rat model via the phosphoinositide 3-kinase (P13K)/protein kinase B (AKT)-mechanistic target of rapamycin (mTOR) signaling pathway. Wistar rats were used to establish the OA rat model, followed by the observation of histopathological changes, Mankin score, and the detection of IGF-1-positive expression and tissue apoptosis. The underlying regulatory mechanisms of miR-206 were analyzed in concert with treatment by an miR-206 mimic, an miR-206 inhibitor, or small interfering RNA against IGF-1 in chondrocytes isolated from OA rats. Then, the expression of miR-206, IGF-1, and related factors in the signaling pathway, cell cycle, and apoptosis, as well as inflammatory factors, were determined. Subsequently, chondrocyte proliferation, cell cycle distribution, apoptosis, autophagy, and autolysosome were measured. OA articular cartilage tissue exhibited a higher Mankin score, promoted cell apoptotic rate, increased expression of IGF-1, Beclin1, light chain 3 (LC3), Unc-51-like autophagy activating kinase 1 (ULK1), autophagy-related 5 (Atg5), caspase-3, and Bax, yet exhibited decreased expression of miR-206, P13K, AKT, mTOR, and Bcl-2. Besides, miR-206 downregulated the expression of IGF-1 and activated the P13K/AKT signaling pathway. Moreover, miR-206 overexpression and IGF-1 silencing inhibited the interleukins levels (IL-6, IL-17, and IL-18), cell apoptotic rate, the formation of autolysosome, and cell autophagy while promoting the expression of IL-1β and cell proliferation. The findings from our study provide a basis for the efficient treatment of OA by investigating the inhibitory effects of miR-206 on autophagy and apoptosis of articular cartilage in OA via activating the IGF-1-mediated PI3K/AKT-mTOR signaling pathway.
Yu Q
,Zhao B
,He Q
,Zhang Y
,Peng XB
... -
《-》
Silencing UHRF1 enhances cell autophagy to prevent articular chondrocytes from apoptosis in osteoarthritis through PI3K/AKT/mTOR signaling pathway.
Osteoarthritis (OA) is a common chronic degenerative joint disease, and chondrocyte apoptosis is one of most important pathological changes of OA pathogenesis. Growing studies have shown that Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an important epigenetic regulatory factor that regulates cell proliferation and apoptosis of various tumors, but its role in OA remains ill-defined. In the present study, we found that UHRF1 expression was increased in human OA cartilage tissues, compared with normal cartilage tissues. Interleukin-1β (IL-1β), a major inflammatory cytokine that promotes cartilage degradation in OA, was used to stimulate primary human chondrocytes in vitro. The expression of UHRF1 was also enhanced in IL-1β-induced chondrocytes. Moreover, down-regulation of UHRF1 induced an increase on cell proliferation and autophagy, and a decrease on apoptosis of chondrocytes after IL-1β treatment. Further data indicated that silencing UHRF1 attenuated the up-regulation of IL-1β on phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes. Then, an activator of PI3K weakened the effect of UHRF1 silencing on cell proliferation, autophagy, apoptosis of IL-1β-induced chondrocytes, and the cell autophagy special inhibitor 3-methyladenine (3-MA) also showed a same impact on UHRF1, hence suggesting that knockdown of UHRF1 enhances cell autophagy to protect chondrocytes from apoptosis in OA through PI3K/AKT/mTOR signaling pathway. In conclusion, our study suggests that UHRF1 may be a potential regulator of chondrocyte apoptosis in the pathogenesis of OA.
Shi X
,Han L
,Sun T
,Zhang F
,Ji S
,Zhang M
,Wang X
,Yang W
... -
《-》