18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-κB pathways.
Radiation-induced inflammation plays an important role in radiation-induced tissue injury. 18β-glycyrrhetinic acid (18β-GA) has shown an anti-inflammatory activity. This study aimed to assess the activity of 18β-GA against radiation-induced skin damage, and explore the underlying mechanisms. In vitro assay revealed 18β-GA treatment decreased the production of IL-1β, IL-6, PGE2 and decreased p38MAPK phosphorylation, DNA-binding activity of AP-1, and NF-κB activation in irradiated RAW264.7 macrophages. Additionally, 18β-GA suppressed NF-κB activation by inhibiting NF-κB/p65 and IκB-α phosphorylation and alleviated ROS overproduction in irradiated RAW264.7 macrophages. In vivo assay showed 18β-GA alleviated severity of radiation-induced skin damage, reduced inflammatory cell infiltration and TNF-α, IL-1β and IL-6 levels in cutaneous tissues. Our findings demonstrate that 18β-GA exhibits anti-inflammatory actions against radiation-induced skin damage probably by inhibiting NADPH oxidase activity, ROS production, activation of p38MAPK and NF-κB signaling, and the DNA binding activities of NF-κB and AP-1, consequently suppressing pro-inflammatory cytokine production.
Su L
,Wang Z
,Huang F
,Lan R
,Chen X
,Han D
,Zhang L
,Zhang W
,Hong J
... -
《-》
18β-glycyrrhetinic acid regulates mitochondrial ribosomal protein L35-associated apoptosis signaling pathways to inhibit proliferation of gastric carcinoma cells.
Gastric carcinoma (GC) is a common gastrointestinal malignancy worldwide. Based on the cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets.
To explore the mechanism by which 18β-glycyrrhetinic acid (18β-GRA) regulates mitochondrial ribosomal protein L35 (MRPL35) related signal proteins to inhibit the proliferation of GC cells.
Cell counting kit-8 assay was used to detect the effects of 18β-GRA on the survival rate of human normal gastric mucosal cell line GES-1 and the proliferation of GC cell lines MGC80-3 and BGC-823. The apoptosis and cell cycle were assessed by flow cytometry. Cell invasion and migration were evaluated by Transwell assay, and cell scratch test was used to detect cell migration. Furthermore, a tumor model was established by hypodermic injection of 2.5 × 106 BGC-823 cells at the selected positions of BALB/c nude mice to determine the effect of 18β-GRA on GC cell proliferation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect MRPL35 expression in the engrafted tumors in mice. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry to screen for differentially expressed proteins (DEPs) extracted from GC cells and control cells after 18β-GRA intervention. A detailed bioinformatics analysis of these DEPs was performed, including Gene Ontology annotation and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and so on. Moreover, STRING database (https://string-db.org/) was used to predict protein-protein interaction (PPI) relationships and Western blot was used to detect the expression of proteins of interest in GC cells.
The results indicated that 18β-GRA could inhibit the proliferation of GC cells in a dose- and time-dependent manner. It could induce GC cell apoptosis and arrest the cell cycle at G0/G1 phase. The proportion of cells arrested at S phase decreased with the increase of 18-GRA dose, and the migration and invasiveness of GC cells were inhibited. The results of animal experiments showed that 18β-GRA could inhibit tumor formation in BALB/c nude mice, and qRT-PCR results showed that MRPL35 expression level was significantly reduced in the engrafted tumors in mice. Using TMT technology, 609 DEPs, among which 335 were up-regulated and 274 were down-regulated, were identified in 18β-GRA intervention compared with control. We found that the intervention of 18β-GRA in GC cells involved many important biological processes and signaling pathways, such as cellular processes, biological regulation, and TP53 signaling pathway. Notably, after the drug intervention, MRPL35 expression was significantly down-regulated (P = 0.000247), TP53 expression was up-regulated (P = 0.02676), and BCL2L1 was down-regulated (P = 0.01699). Combined with the Retrieval of Interacting Genes/Proteins database, we analyzed the relationship between MRPL35, TP53, and BCL2L1 signaling proteins, and we found that COPS5, BAX, and BAD proteins can form a PPI network with MRPL35, TP53, and BCL2L1. Western blot analysis confirmed the intervention effect of 18β-GRA on GC cells, MRPL35, TP53, and BCL2L1 showed dose-dependent up/down-regulation, and the expression of COPS5, BAX, and BAD also increased/decreased with the change of 18β-GRA concentration.
18β-GRA can inhibit the proliferation of GC cells by regulating MRPL35, COPS5, TP53, BCL2L1, BAX, and BAD.
Yuan L
,Yang Y
,Li X
,Zhou X
,Du YH
,Liu WJ
,Zhang L
,Yu L
,Ma TT
,Li JX
,Chen Y
,Nan Y
... -
《-》