Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway.
Polycystic ovary syndrome (PCOS) is a complex gynecological endocrine disease commonly occurred in women of childbearing age. The main hallmark of PCOS includes elevated androgen production and insulin resistance (IR). Liuwei Dihuang Pills (LWDH Pills), a commonly prescribed traditional Chinese medicine (TCM) is widely used as a tonic prescription to treat diabetes, female menopause syndrome and other symptoms with'Kidney-Yin' deficiency. It has been reported the effects LWDH pills on PI3K/Akt signaling pathway in T2DM treatment. Recent studies have also indicated that the treatment of menopausal syndrome may be associated with the ovarian sexual hormone levels regulated by LWDH pills to alleviate female infertility. However, its potential benefits on PCOS have not been fully elucidated.
The primary aim of this study was to investigate the alterations of PI3K/Akt pathway in polycystic ovary syndrome-insulin resistance (PCOS-IR) progression induced by letrozole combined with high fat diet (HFD) and then to explore the detailed mechanism of LWDH Pills to alleviate PCOS.
The female Sprague-Dawley rats were continuously treated with letrozole (p.o administration at 1 mg kg-1·day-1) and HFD for 21 days to establish the PCOS-IR model. Concurrently, metformin (200 mg kg-1·day-1) or LWDH Pills was orally administrated (1.2 or 3.6 g kg-1·day-1) to intervene disease progression. The ovarian pathology was evaluated by HE (hematoxylin-eosin) staining. The serum sexual hormones, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol, testosterone, progesterone and fasting insulin (FINS) were determined by radioimmunoassay. The protein expressions of IRS-1, PI3Kp85α, Akt and FoxO1a were analyzed by western blotting, while the mRNA levels of follicle-stimulating hormone receptor (FSHR) and Cyp19a1 in ovarian tissue were measured by qPCR.
The upregulated phosphorylation of IRS-1 (S307), down-regulated phosphorylation of PI3Kp85α, Akt, and FoxO1a were significantly reversed by LWDH Pills (3.6 g kg-1·day-1) in PCOS-IR rats with up-regulated mRNA levels of FSHR and Cyp19a1 in ovary. Also, the index of insulin resistance was gradually adjusted to normal by LWDH Pills. The serum levels of FSH, estradiol, progesterone levels were significantly raised while LH, testosterone were reduced. The ovarian polycystic changes were alleviated while the atresia follicles were reduced.
LWDH Pills therapy obviously improved the ovarian polycystic pathogenesis and regained the development of follicles via upregulating Cyp19a1, alleviated insulin resistance through acting on PI3K/Akt signaling pathway. These findings have provided scientific evidence for LWDH Pills to treat PCOS.
Qiu Z
,Dong J
,Xue C
,Li X
,Liu K
,Liu B
,Cheng J
,Huang F
... -
《-》
Guizhi Fuling Wan reduces autophagy of granulosa cell in rats with polycystic ovary syndrome via restoring the PI3K/AKT/mTOR signaling pathway.
Guizhi Fuling Wan (GFW) is a traditional Chinese medicine used to remove blood stasis and dissipate phlegm for treating gynecological diseases that was invented by Zhang Zhongjing in the Eastern Han dynasty. In recent years, GFW has been widely used to treat patients with polycystic ovary syndrome (PCOS). Clinical and animal studies have shown that it is effective in the treatment of PCOS, but its mechanism is unknown. Generally, it works by regulating autophagy via the PI3K/AKT/mTOR signaling pathway.
This study investigated the effects and mechanism of GFW in PCOS rats with insulin resistance (IR) in order to provide better understanding of its observed clinical effects and a theoretical basis for the study of traditional Chinese medicine.
Eighty-four female Sprague-Dawley rats were randomly divided into seven groups (n = 12 per group): 1) control, 2) PCOS model, 3) low-dose GFW, 4) medium-dose GFW, 5) high-dose GFW, 6) metformin, and 7) medium-dose GFW plus LY294002. In all non-control groups, we induced PCOS through daily letrozole combined with intragastric high-fat emulsion for 21 days. After treatment, rats were sacrificed and serum follicle-stimulating hormone (FSH), testosterone (T), progesterone, luteinizing hormone (LH), 17β-estradiol, fasting insulin (FINS), and fasting plasma glucose levels were measured by enzyme-linked immunosorbent assay (ELISA). The LH/FSH ratios and HOMA-IR values were calculated. Ovarian morphology was observed by hematoxylin and eosin staining, and all follicles were counted under a microscope. MDC-positive vesicles were used as markers to detect autophagy, and the expression levels of p62, Beclin1, and LC3-II were examined by immunostaining. Western blotting was used to measure PI3K/AKT/mTOR pathway activation, granulosa cell apoptosis, and autophagy.
Compared with the PCOS model group, GFW-treated rats had less atretic and cystic follicles, and more mature follicles and corpus lutea. The GFW-treated rats had lower serum T, LH, and FINS levels than the PCOS model group, as well as lower LH/FSH ratios and HOMA-IR values. GFW treatment resulted in significantly reduced levels of cleaved-Caspase-3, cleaved-Caspase-9, BAX, Beclin1, Atg5, and LC3-II. Phosphorylation of PI3K, AKT, and mTOR was significantly higher in GFW-treated rats compared with the PCOS model group. The phosphorylation of PI3K, AKT, and mTOR was decreased with the use of a PI3K antagonist.
Our results indicate that GFW inhibited granulosa cell autophagy and promoted follicular development to attenuate ovulation disorder in PCOS-IR rats. This was associated with activation of the PI3K/AKT/mTOR signaling pathway.
Liu M
,Zhu H
,Zhu Y
,Hu X
... -
《-》
Follicular Fluid-Derived Exosomal MicroRNA-18b-5p Regulates PTEN-Mediated PI3K/Akt/mTOR Signaling Pathway to Inhibit Polycystic Ovary Syndrome Development.
Small RNA sequences in follicular fluid (FF)-derived exosomes (extracellular vesicles contain proteins, DNA, and RNA) vitally function in the development of polycystic ovary syndrome (PCOS). It has been identified that microRNA (miR)-18b-5p is one of miRs that differ between control and PCOS women that passed the false discovery rate, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is an important modifier of biological functions of ovarian granulosa cells (GCs) in PCOS. However, whether miR-18b-5p could functionally mediate the progression of PCOS via PTEN was not clarified completely, which was the issue we wanted to solve in our research. FF-derived exosomes were isolated using an extraction kit. KGN cells were co-cultured with miR-18b-5p-modified exosomes or transfected with a PTEN-related vector. After treatment, cell proliferation and apoptosis were observed. A rat model of PCOS was established by letrozole and then injected with miR-18b-5p-modified exosomes. Then, serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and estradiol (E2) levels in PCOS rats were measured. miR-18b-5p, PTEN, and phosphatidylinositol 3 kinases/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway-related genes were tested. In PCOS patients, miR-18b-5p was downregulated, and PTEN was highly expressed in FF and GCs. PTEN knockdown increased KGN cell proliferation and limited apoptosis. FF-derived exosomes stimulated proliferation and suppressed apoptosis of KGN cells; decreased FSH, LH, and testosterone; and increased E2 in PCOS rats. Upregulating miR-18b-5p further enhanced the inhibitory effects of exosomes on suppressing the progression of PCOS. miR-18b-5p targeted PTEN and could activate PI3K/Akt/mTOR pathway. miR-18b-5p produced by FF-derived exosomes reduces PTEN expression and promotes the activation of the PI3K/Akt/mTOR signaling pathway to improve PCOS. Based on that, circulating miR-18b-5p levels can contribute to the progression of PCOS complications.
Zhou Z
,Tu Z
,Zhang J
,Tan C
,Shen X
,Wan B
,Li Y
,Wang A
,Zhao L
,Hu J
,Ma N
,Zhou J
,Chen L
,Song Y
,Lu W
... -
《-》