-
Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: observational longitudinal cohort study of 1,219 consecutive cycles.
To evaluate the impact of the male factor on the outcomes of intracytoplasmic sperm injection (ICSI) cycles combined with preimplantation genetic testing for aneuploidies (PGT-A).
Observational longitudinal cohort study.
Private in vitro fertilization (IVF) center.
A total of 1,219 oocyte retrievals divided into five study groups according to sperm parameters: normozoospermia (N), moderate male factor (MMF), severe oligoasthenoteratozoospermia (OAT-S), obstructive azoospermia (OA), and nonobstructive azoospermia (NOA).
ICSI with ejaculated/surgically retrieved sperm, blastocyst culture, trophectoderm-based quantitative polymerase chain reaction PGT-A, and frozen-warmed euploid embryo transfer (ET).
The primary outcome measures were fertilization, blastocyst development, and euploidy rates; the secondary outcome measures were live birth and miscarriage rates. Perinatal and obstetrical outcomes were monitored as well.
A total of 9,042 metaphase II oocytes were inseminated. The fertilization rate was significantly reduced in MMF, OAT-S, OA, and NOA compared with N (74.8%, 68.7%, 67.3%, and 53.1% vs. 77.2%). The blastocyst rate per fertilized oocyte was significantly reduced in MMF and NOA compared with N (48.6% and 40.6% vs. 49.3%). The timing of blastocyst development also was affected in OA and NOA. Logistic regression analysis adjusted for confounders highlighted NOA as a negative predictor of obtaining an euploid blastocyst per OPU (odds ratio 0.5). When the analysis was performed per obtained blastocyst, however, no correlation between male factor and euploidy rate was observed. Embryo transfers also resulted in similar live birth and miscarriage rates. No impact of sperm factor on obstetrical/perinatal outcomes was observed.
Severe male factor impairs early embryonic competence in terms of fertilization rate and developmental potential. However, the euploidy rate and implantation potential of the obtained blastocysts are independent from sperm quality.
Mazzilli R
,Cimadomo D
,Vaiarelli A
,Capalbo A
,Dovere L
,Alviggi E
,Dusi L
,Foresta C
,Lombardo F
,Lenzi A
,Tournaye H
,Alviggi C
,Rienzi L
,Ubaldi FM
... -
《-》
-
Leave the past behind: women's reproductive history shows no association with blastocysts' euploidy and limited association with live birth rates after euploid embryo transfers.
Is there an association between patients' reproductive history and the mean euploidy rates per biopsied blastocysts (m-ER) or the live birth rates (LBRs) per first single vitrified-warmed euploid blastocyst transfers?
Patients' reproductive history (as annotated during counselling) showed no association with the m-ER, but a lower LBR was reported after euploid blastocyst transfer in women with a history of repeated implantation failure (RIF).
Several studies have investigated the association between the m-ER and (i) patients' basal characteristics, (ii) ovarian stimulation strategy and dosage, (iii) culture media and conditions, and (iv) embryo morphology and day of full blastocyst development. Conversely, the expected m-ER due to women's reproductive history (previous live births (LBs), miscarriages, failed IVF cycles and transfers, and lack of euploid blastocysts among prior cohorts of biopsied embryos) still needs investigations. Yet, this information is critical to counsel new patients about a first cycle with preimplantation genetic testing for aneuploidy (PGT-A), but even more so after former adverse outcomes to prevent treatment drop-out.
This observational study included all patients undergoing a comprehensive chromosome testing (CCT)-based PGT-A cycle with at least one biopsied blastocyst in the period April 2013-December 2019 at a private IVF clinic (n = 2676 patients undergoing 2676 treatments and producing and 8151 blastocysts). m-ER were investigated according to women's reproductive history of LBs: no/≥1, miscarriages: no/1/>1; failed IVF cycles: no/1/2/>2, and implantation failures after previous transfers: no/1/2/>2. Among the 2676 patients included in this study, 440 (16%) had already undergone PGT-A before the study period; the data from these patients were further clustered according to the presence or absence of euploid embryo(s) in their previous cohort of biopsied blastocysts. The clinical outcomes per first single vitrified-warmed euploid blastocyst transfers (n =1580) were investigated according to the number of patients' previous miscarriages and implantation failures.
The procedures involved in this study included ICSI, blastocyst culture, trophectoderm biopsy without hatching in Day 3, CCT-based PGT-A without reporting segmental and/or putative mitotic (or mosaic) aneuploidies and single vitrified-warmed euploid blastocyst transfer. For statistical analysis, Mann-Whitney U or Kruskal-Wallis tests, as well as linear regressions and generalised linear models among ranges of maternal age at oocyte retrieval were performed to identify significant differences for continuous variables. Fisher's exact tests and multivariate logistic regression analyses were instead used for categorical variables.
Maternal age at oocyte retrieval was the only variable significantly associated with the m-ER. We defined five clusters (<35 years: 66 ± 31%; 35-37 years: 58 ± 33%; 38-40 years: 43 ± 35%; 40-42 years: 28 ± 34%; and >42 years: 17 ± 31%) and all analyses were conducted among them. The m-ER did not show any association with the number of previous LBs, miscarriages, failed IVF cycles or implantation failures. Among patients who had already undergone PGT-A before the study period, the m-ER did not associate with the absence (or presence) of euploid blastocysts in their former cohort of biopsied embryos. Regarding clinical outcomes of the first single vitrified-warmed euploid blastocyst transfer, the implantation rate was 51%, the miscarriage rate was 14% and the LBR was 44%. This LBR was independent of the number of previous miscarriages, but showed a decreasing trend depending on the number of previous implantation failures, reaching statistical significance when comparing patients with >2 failures and patients with no prior failure (36% versus 47%, P < 0.01; multivariate-OR adjusted for embryo quality and day of full blastocyst development: 0.64, 95% CI 0.48-0.86, P < 0.01). No such differences were shown for previous miscarriage rates.
The sample size for treatments following a former completed PGT-A cycle should be larger in future studies. The data should be confirmed from a multicentre perspective. The analysis should be performed also in non-PGT cycles and/or including patients who did not produce blastocysts, in order to investigate a putative association between women's reproductive history with outcomes other than euploidy and LBRs.
These data are critical to counsel infertile couples before, during and after a PGT-A cycle, especially to prevent treatment discontinuation due to previous adverse reproductive events. Beyond the 'maternal age effect', the causes of idiopathic recurrent pregnancy loss (RPL) and RIF are likely to be endometrial receptivity and selectivity issues; transferring euploid blastocysts might reduce the risk of a further miscarriage, but more information beyond euploidy are required to improve the prognosis in case of RIF.
No funding was received and there are no competing interests.
N/A.
Cimadomo D
,Capalbo A
,Dovere L
,Tacconi L
,Soscia D
,Giancani A
,Scepi E
,Maggiulli R
,Vaiarelli A
,Rienzi L
,Ubaldi FM
... -
《-》
-
Minimizing mosaicism: assessing the impact of fertilization method on rate of mosaicism after next-generation sequencing (NGS) preimplantation genetic testing for aneuploidy (PGT-A).
Palmerola KL
,Vitez SF
,Amrane S
,Fischer CP
,Forman EJ
... -
《-》
-
Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles.
To test whether abnormally fertilized oocyte (AFO)-derived blastocysts are diploid and can be rescued for clinical use.
Longitudinal-cohort study from January 2015 to September 2016 involving IVF cycles with preimplantation genetic testing for aneuploidy (PGT-A). Ploidy assessment was incorporated whenever a blastocyst from a monopronuclear (1PN) or tripronuclear zygote (2PN + 1 smaller PN; 2.1 PN) was obtained.
Private IVF clinics and genetics laboratories.
A total of 556 women undergoing 719 PGT-A cycles.
Conventional chromosome analysis was performed on trophectoderm biopsies by quantitative polymerase chain reaction. For AFO-derived blastocysts, ploidy assessment was performed on the same biopsy with the use of allele ratios for hetorozygous SNPs analyzed by means of next-generation sequencing (1:1 = diploid; 2:1 = triploid; loss of heterozygosity = haploid). Balanced-diploid 1PN- and 2.1PN-derived blastocysts were transferred in the absence of normally fertilized transferable embryos.
Ploidy constitution and clinical value of AFO-derived blastocysts in IVF PGT-A cycles.
Of the 5,026 metaphase II oocytes injected, 5.2% and 0.7% showed 1PN and 2.1PN, respectively. AFOs showed compromised embryo development (P<.01). Twenty-seven AFO-derived blastocysts were analyzed for ploidy constitution. The 1PN-derived blastocysts were mostly diploid (n = 9/13; 69.2%), a few were haploid (n = 3/13; 23.1%), and one was triploid (n = 1/13; 7.7%). The 2.1PN-derived blastocysts were also mostly diploid (n = 12/14; 85.7%), and the remainder were triploid. Twenty-six PGT-A cycles resulted in one or more AFO-derived blastocysts (n = 26/719; 3.6%). Overall, eight additional balanced-diploid transferable embryos were obtained from AFOs. In three cycles, the only balanced-diploid blastocyst produced was from an AFO (n = 3/719; 0.4%). Three AFO-derived live births were achieved: one from a 1PN zygote and two from 2.1PN zygotes.
Enhanced PGT-A technologies incorporating reliable ploidy assessment provide an effective tool to rescue AFO-derived blastocysts for clinical use.
Capalbo A
,Treff N
,Cimadomo D
,Tao X
,Ferrero S
,Vaiarelli A
,Colamaria S
,Maggiulli R
,Orlando G
,Scarica C
,Scott R
,Ubaldi FM
,Rienzi L
... -
《-》
-
Looking past the appearance: a comprehensive description of the clinical contribution of poor-quality blastocysts to increase live birth rates during cycles with aneuploidy testing.
Which are the clinical benefits and risks of including poor-quality blastocysts (PQBs) in the cohort of biopsied embryos during a cycle with preimplantation genetic testing for aneuploidies (PGT-A)?
PQBs show a worse prognosis with respect to sibling non-PQBs, but their clinical use allows an overall 2.6% increase in the number of live births (LBs) achievable after PGT-A.
PQBs (<BB according to Gardner and Schoolcraft's classification) are generally disregarded for clinical use and/or research purposes. Therefore, limited data exist in literature to estimate the benefits and risks deriving from the transfer of a PQB. In Italy, the law imposes the transfer or cryopreservation of all embryos, unless proven not viable. This regulation has allowed the production of a large amount of data regarding poor-quality embryos. Previous reports outlined a lower chance of euploidy and implantation for PQBs. Yet, a comprehensive picture of their real clinical contribution is missing.
This observational cohort study including 2757 oocyte retrievals for PGT-A (mean maternal age, 39.6 ± 3.3 years) conducted at a private IVF centre between April 2013 and May 2018. A total of 1497 PQBs were obtained and their embryological, chromosomal and clinical features were compared to 5250 non-PQBs (≥BB according to Gardner and Schoolcraft's classification) and adjusted for all significant confounders. After defining the overall increase in LBs due to PQBs, we outlined the population of patients who might benefit the most from their clinical use.
ICSI cycles, involving ovarian stimulation, blastocyst culture, trophectoderm biopsy, vitrification, comprehensive chromosome testing and vitrified-warmed euploid single embryo transfers (SETs), were conducted. Overall analyses and sub-analyses in populations of patients clustered according to maternal age at retrieval and size of the cohort of sibling non-PQBs were performed. Finally, the risk of miscarriage and the chance of LB per biopsied PQB and non-PQB were estimated.
PQBs allowed a 12.4% increase in the cycles where ≥1 blastocyst was biopsied. To date, we report a concurrent 2.6% increase in the cycles resulting in ≥1 LB. On average 0.7 ± 0.9 (range, 0-9) PQBs were obtained per cycle for biopsy, including 0.2 ± 0.4 (range, 0-5) euploid PQBs. Maternal age solely correlates with the prevalence of PQBs from both overall and cycle-based analyses. Indeed, the patients who benefit the most from these embryos (i.e. 18 women achieving their only LBs thanks to PQBs) cluster among women older than 42 years and/or those with no or few sibling non-PQBs (1.1 ± 1.1; range, 0-3). The 1497 PQBs compared to the 5250 non-PQBs showed slower development (Day 5, 10.1% versus 43.9%; Day 6, 60.5% versus 50.8%; Day 7, 29.4% versus 5.2%) and lower euploidy rates (23.5% versus 51%; adjusted OR, 0.36). Among the 195 and 1697 transferred euploid PQBs and non-PQBs, the former involved a lower implantation rate (16.9% versus 52.3%) and a higher miscarriage rate per clinical pregnancy (36.4% versus 13.9%), therefore resulting in a lower LB rate (LBR, 10.8% versus 44.6%; adjusted OR, 0.22). Based on these rates, we estimated an overall 1.5% risk of miscarriage and 2.6% chance of LB after euploid vitrified-warmed SET per each biopsied PQB. The same estimates for non-PQBs were 3.7% and 22.8%.
The clinical benefit of PQBs is underestimated since they are the last option for transfer and this analysis entailed only the first LB. The higher miscarriage rate per clinical pregnancy here reported might be the consequence of a population of patients of poorer prognosis undergoing the SET of euploid PQBs, an option that requires further investigation. Finally, a cost-benefit analysis is needed in a prospective non-selection fashion.
PQBs show higher aneuploidy rates. If to be included, PGT-A is recommended. When selected against aneuploid-PQBs, euploid ones could still involve a worse prognosis, yet, their LBR is not negligible. Women should be informed that a poor morphology does not define a non-viable embryo per se, although PQBs show a reduced chance of resulting in an LB.
No external funding was used for this study. The authors have no conflict of interest related to this study.
N/A.
Cimadomo D
,Soscia D
,Vaiarelli A
,Maggiulli R
,Capalbo A
,Ubaldi FM
,Rienzi L
... -
《-》