[Effects and mechanisms of UCG ameliorating renal interstitial fibrosis by regulating TGF-β1/SnoN/Smads signaling pathway in renal failure rats].
This study was aimed to demonstrate preliminarily the effects and mechanisms of uremic clearance granule (UCG) ameliorating renal interstitial fibrosis (RIF) by regulating transforming growth factor (TGF)-β1/SnoN/Smads signaling pathway in vivo. Fifteen rats were randomly divided into 3 groups:the normal group,the model group and the UCG group. The rats with renal failure were induced by intragastric administration of adenine and unilateral ureteral obstruction (UUO). After modeling,the rats in the UCG group and in the other groups were intervened by intragastric administration of UCG and distilled water respectively during 3 weeks. The body weight and 24 h urinary protein excretion (Upro) in all rats were tested after drug administration. All rats were killed after drug administration for 3 weeks,blood and kidneys were collected and weighted,kidney appearance and renal morphological characteristics were observed. In addition,serum biochemical indices and the protein expressions of TGF-β1,SnoN,phosphorylated Smad2/3 (p-Smad2/3) and Smad7 in the kidney were evaluated respectively. The results indicated that,after the intervention of UCG,the general state of health,kidney appearance,serum creatinine (Scr),blood urea nitrogen (BUN),uric acid (UA),albumin (Alb),Upro and renal morphological change in model rats were improved in different degrees,respectively. Moreover,UCG down-regulated the protein expressions of TGF-β1 and p-Smad2/3,and up-regulated the protein expressions of SnoN and Smad7 in the kidney. In conclusion,UCG reduces extracellular matrix (ECM) synthesis and delays the progression of renal failure via possibly multi-targeting at regulating TGF-β1/SnoN/Smads signaling pathway in vivo.
Wu W
,Huang YR
,Wan YG
,Yang HM
,Mao ZM
,Yang JJ
,Shi G
,Sun W
... -
《-》
Ureic clearance granule, alleviates renal dysfunction and tubulointerstitial fibrosis by promoting extracellular matrix degradation in renal failure rats, compared with enalapril.
Chinese herbal compound prescription has a unique therapeutic action on chronic kidney disease (CKD) in China. In clinics, Uremic Clearance Granules (UCG), a compounded Chinese patent medicine, has been frequently used to treat chronic renal failure (CRF) patients for nearly 30 years, however, the deep therapeutic mechanisms involved in vivo remain a challenge. This study aims to demonstrate the effects and mechanisms of UCG on renal dysfunction and tubulointerstitial fibrosis by regulating extracellular matrix (ECM) degradation and transforming growth factor (TGF)-beta1/Smad signaling activity in vivo, compared with enalapril.
Twenty-six rats were randomly divided into 4 groups, a sham-operated group (Sham group), a vehicle-intervened group (Vehicle group), a UCG-treated group (UCG group) (5g/kg/day) and an enalapril-treated group (Enalapril group) (20mg/kg/day). The rats with renal failure were induced by adenine (150 mg/kg/day) and unilateral ureteral obstruction (UUO), and killed on day 35 after the administration. Proteinuria, urinary N-acetyl-beta-D-glucosaminidase (UNAG), blood biochemical parameters, renal morphological changes, collagen type IV (CIV), matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of metalloproteinase (TIMP)-1, as well as the key molecular protein expressions in TGF-beta1/Smad signaling pathway were observed, respectively.
Adenine administration and UUO induced severe renal damages, as indicated by renal dysfunction, proteinuria and the marked histopathological injuries in the tubules and interstitium, which were associated with MMP-2/TIMP-1 imbalance and TGF-beta1/Smad signaling activity, as shown by up-regulation of the protein expressions of TGF-beta1, TGF-beta receptor type I (RI), TGF-beta receptor type II (RII), Smad2/3, phosphorylated-Smad2/3 (p-Smad2/3) and Smad4, as well as down-regulation of the protein expression of Smad7 in the kidney. UCG treatment, however, significantly not only attenuated renal dysfunction and tubulointerstitial fibrosis, but also improved the protein expressions of MMP-2, TIMP-1, TGF-beta1, TGF-beta RI, p-Smad2/3, Smad4 and Smad7 in the kidney. Besides, the effects of UCG were stronger than those of enalapril partly.
UCG similar to enalapril, is renoprotective via ameliorating renal dysfunction and tubulointerstitial fibrosis in the renal failure model. The potential mechanisms by which UCG exerts its therapeutical effects in vivo are through promoting ECM degradation and regulating MMP-2/TIMP-1 balance or signaling molecular activity in TGF-beta1/Smad pathway in the kidney. These findings suggest that UCG treatment is undoubtedly useful in preventing the progression of CRF.
Huang YR
,Wei QX
,Wan YG
,Sun W
,Mao ZM
,Chen HL
,Meng XJ
,Shi XM
,Tu Y
,Zhu Q
... -
《-》
[Effects and mechanisms of Shenkang injection promoting extracellular matrix degradation via regulating ERK1/2/MMPs signaling pathway in renal failure rats].
This study aimed to clarify preliminarily the effects and mechanisms of Shenkang injection (SKI) promoting extracellular matrix(ECM)degradation via regulating extracellular-signal regulated protein kinase(ERK)1/2/matrix metalloproteinases(MMPs)signaling pathway in renal failure rats. Twenty rats were randomly divided into 4 groups:the Sham group,the Model group,the SKI group and the Enalapril maleate(EM)group. The model rats with renal failure were induced by intragastric administration of adenine and unilateral ureteral obstruction(UUO). After modeling, the rats in SKI group and EM group were intervened by intraperitoneal injection of SKI or intragastric administration of the EM suspension,while the rats in Sham group and Model group were administrated with distilled water respectively for 3 weeks. The 24 h urinary protein excretion(Upro)and urinary N-acety1-β-D-glucosaminidase(UNAG)in all rats were tested after drug administration. All rats were sacrificed after drug administration for 3 weeks,blood and kidney were collected,renal morphological characteristics were observed. Furthermore,serum biochemical indices and the protein expressions of collagen type IV(CIV),MMP-2,MMP-9,tissue inhibitors of metalloproteinase(TIMP)-1,ERK1/2 and phosphorylated-ERK1/2(p-ERK1/2)in the kidney were evaluated respectively. The results indicated that,after the intervention of SKI,serum creatinine(Scr),blood urea nitrogen(BUN),uric acid(UA),albumin(Alb),Upro,UNAG and renal morphological change in model rats were improved at different levels,respectively. Moreover,these actions were similar to EM. In addition to these,SKI adjusted the protein expressions of MMP-2,MMP-9 and TIMP-1,and down-regulated the protein expressions of p-ERK1/2 in the kidney. Moreover,these actions were different from EM. In conclusion,SKI promotes ECM degradation and delays the progression of renal failure possibly through regulating ERK1/2 signaling pathway activation in the kidney and intervening MMPs/TIMP-1 expressions in vivo.
Yang JJ
,Mao ZM
,Wan YG
,Wu W
,Huang YR
,Shi G
,Han WB
,Yao J
... -
《-》