deBGR: an efficient and near-exact representation of the weighted de Bruijn graph.
摘要:
Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers. We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems. https://github.com/splatlab/debgr . rob.patro@cs.stonybrook.edu. Supplementary data are available at Bioinformatics online.
收起
展开
DOI:
10.1093/bioinformatics/btx261
被引量:
年份:
2017


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(148)
参考文献(22)
引证文献(10)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无