Comparative effectiveness of once-weekly glucagon-like peptide-1 receptor agonists with regard to 6-month glycaemic control and weight outcomes in patients with type 2 diabetes.

来自 PUBMED

作者:

Unni SWittbrodt EMa JSchauerhamer MHurd JRuiz-Negrón NMcAdam-Marx C

展开

摘要:

A retrospective cohort study was conducted in patients with type 2 diabetes in an electronic medical record database to compare real-world, 6-month glycated haemoglobin (HbA1c) and weight outcomes for exenatide once weekly with those for dulaglutide and albiglutide. The study included 2465 patients: exenatide once weekly, n = 2133; dulaglutide, n = 201; and albiglutide, n = 131. The overall mean (standard deviation [s.d.]) age was 60 (11) years and 54% were men; neither differed among the comparison groups. The mean (s.d.) baseline HbA1c was similar in the exenatide once-weekly (8.3 [1.7]%) and dulaglutide groups (8.5 [1.5]%; P = .165), but higher in the albiglutide group (8.7 [1.7]%; P < .001). The overall mean (s.d.) HbA1c change was -0.5 (1.5)% (P < .001) and this did not differ among the comparison groups in either adjusted or unadjusted analyses. The mean (s.d.) weight change was -1.4 (4.7) kg for exenatide once weekly and -1.6 (3.7) kg for albiglutide (P = .579), but was greater for dulaglutide, at -2.7 (5.7) kg (P = .001). Outcomes were similar in subsets of insulin-naive patients with baseline HbA1c ≥7.0% or ≥9.0%. All agents significantly reduced HbA1c at 6 months, with no significant differences among agents or according to baseline HbA1c in insulin-naive subgroups.

收起

展开

DOI:

10.1111/dom.13107

被引量:

15

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(434)

参考文献(0)

引证文献(15)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读