Alpha-Mangostin protects rat articular chondrocytes against IL-1β-induced inflammation and slows the progression of osteoarthritis in a rat model.

来自 PUBMED

作者:

Pan TWu DCai NChen RShi XLi BPan J

展开

摘要:

Osteoarthritis (OA) is a joint disease characterized by inflammation and cartilage degradation. α-Mangostin (α-MG), which can be isolated from the fruit of the tropical evergreen tree Garcinia mangostana-L, is known to have anti-inflammatory properties. The aim of the study was to investigate the use of α-MG in the treatment of OA, using both rat chondrocytes and an OA rat model induced by destabilization of the medial meniscus (DMM). Rat chondrocytes were pretreated with α-MG (0, 1.25, 2.5, and 5.0μg/ml for 24h) prior to stimulation with interleukin-1β (IL-1β) (10ng/ml for 24h). Nitric oxide (NO) production was determined using the Griess method and prostaglandin E2 (PGE2) was assessed using an enzyme-linked immunosorbent assay (ELISA). The expression of inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX-2), matrix metalloproteinase-3, -9, and -13 (MMP-3, MMP-9, and MMP-13), Collagen II, and Aggrecan were detected by both quantitative real-time PCR (qRT-PCR) and a western blot analysis. Nuclear factor-κB (NF-κB) signaling molecules were detected by western blot analysis. Detection of p65 nuclear translocation of NF-κB was examined using immunofluorescence staining. The OA rats received intraperitoneal injections of α-MG (10mg/kg) or saline every other day. Hematoxylin and eosin and Safranin-O-Fast green staining were used to evaluate the severity of cartilage lesions up to 8weeks following surgery. α-MG inhibited the production of NO and PGE2. The elevated expression of INOS, COX-2, MMP-3, MMP-9, and MMP-13, and the degradation of Collagen II and Aggrecan, were reversed by α-MG in IL-1β-stimulated chondrocytes. In addition, IL-1β induced considerable phosphorylation of the NF-kB signaling pathway, which was inhibited by α-MG. Furthermore, the immunofluorescence staining demonstrated that α-MG could suppress IL-1β-induced p65 nuclear translocation. In vivo, cartilage treated with α-MG showed attenuated degeneration and had low Osteoarthritis Research Society International (OARSI) scores compared with the control group. Taken together, these results show that α-MG has potential therapeutic value in the treatment of OA.

收起

展开

DOI:

10.1016/j.intimp.2017.08.010

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2141)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读