Annual killifish adaptations to ephemeral environments: Diapause i in two austrolebias species.
摘要:
Many organisms are able to survive in extreme environments by entering a state of dormancy. In dormancy, vital activities are reduced until environmental conditions are compatible with active life. Annual killifishes show a special developmental pattern characterized by a phase of dispersion-reaggregation of the blastomeres that separates epiboly from organogenesis, and the capability to enter dormancy in diapause. High tolerance to environmental stress confers annual killifish embryos the condition of extremophiles. At present, the questions of our research group are focused on the understanding of the mechanisms involved in diapause regulation through an interdisciplinary approach. As a first step, it is necessary to characterize diapauses at morphological and physiological levels and to evaluate induction cues under laboratory conditions. In this context, we characterized diapause I in two Austrolebias species. Our experimental approach to induce diapause I was successful and revealed the co-existence of two diapause I phenotypes named A and B instead of one. These phenotypes showed a tendency for lower total extractable RNA content compared with active developmental stages (80-100% epiboly and early reaggregate). These phenotypes are alternative diapause I stages and may have ecological relevance because both were found in embryos in natural ponds. Developmental Dynamics 246:848-857, 2017. © 2017 Wiley Periodicals, Inc.
收起
展开
DOI:
10.1002/dvdy.24580
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(132)
参考文献(0)
引证文献(1)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无