Markers of neuroinflammation associated with Alzheimer's disease pathology in older adults.
In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on markers of inflammation in subjects with mild cognitive impairment or AD dementia provided inconsistent results. We hypothesized that distinct blood and cerebrospinal fluid (CSF) inflammatory markers are associated with biomarkers of amyloid and tau pathology in older adults without cognitive impairment or with beginning cognitive decline.
To identify blood-based and CSF neuroinflammation marker signatures associated with AD pathology (i.e. an AD CSF biomarker profile) and to investigate associations of inflammation markers with CSF biomarkers of amyloid, tau pathology, and neuronal injury.
Cross-sectional analysis was performed on data from 120 older community-dwelling adults with normal cognition (n=48) or with cognitive impairment (n=72). CSF Aβ1-42, tau and p-tau181, and a panel of 37 neuroinflammatory markers in both CSF and serum were quantified. Least absolute shrinkage and selection operator (LASSO) regression was applied to determine a reference model that best predicts an AD CSF biomarker profile defined a priori as p-tau181/Aβ1-42 ratio >0.0779. It was then compared to a second model that included the inflammatory markers from either serum or CSF. In addition, the correlations between inflammatory markers and CSF Aβ1-42, tau and p-tau181 levels were assessed.
Forty-two subjects met criteria for having an AD CSF biomarker profile. The best predictive models included 8 serum or 3 CSF neuroinflammatory markers related to cytokine mediated inflammation, vascular injury, and angiogenesis. Both models improved the accuracy to predict an AD biomarker profile when compared to the reference model. In analyses separately performed in the subgroup of participants with cognitive impairment, adding the serum or the CSF neuroinflammation markers also improved the accuracy of the diagnosis of AD pathology. None of the inflammatory markers correlated with the CSF Aβ1-42 levels. Six CSF markers (IL-15, MCP-1, VEGFR-1, sICAM1, sVCAM-1, and VEGF-D) correlated with the CSF tau and p-tau181 levels, and these associations remained significant after controlling for age, sex, cognitive impairment, and APOEε4 status.
The identified serum and CSF neuroinflammation biomarker signatures improve the accuracy of classification for AD pathology in older adults. Our results suggest that inflammation, vascular injury, and angiogenesis as reflected by CSF markers are closely related to cerebral tau pathology.
Popp J
,Oikonomidi A
,Tautvydaitė D
,Dayon L
,Bacher M
,Migliavacca E
,Henry H
,Kirkland R
,Severin I
,Wojcik J
,Bowman GL
... -
《-》
Neuroinflammatory CSF biomarkers MIF, sTREM1, and sTREM2 show dynamic expression profiles in Alzheimer's disease.
There is a need for novel fluid biomarkers tracking neuroinflammatory responses in Alzheimer's disease (AD). Our recent cerebrospinal fluid (CSF) proteomics study revealed that migration inhibitory factor (MIF) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1) increased along the AD continuum. We aimed to assess the potential use of these proteins, in addition to sTREM2, as CSF biomarkers to monitor inflammatory processes in AD.
We included cognitively unimpaired controls (n = 67, 63 ± 9 years, 24% females, all amyloid negative), patients with mild cognitive impairment (MCI; n = 92, 65 ± 7 years, 47% females, 65% amyloid positive), AD (n = 38, 67 ± 6 years, 8% females, all amyloid positive), and DLB (n = 50, 67 ± 6 years, 5% females, 54% amyloid positive). MIF, sTREM1, and sTREM2 levels were measured by validated immunoassays. Differences in protein levels between groups were tested with analysis of covariance (corrected for age and sex). Spearman correlation analysis was performed to evaluate the association between these neuroinflammatory markers with AD-CSF biomarkers (Aβ42, tTau, pTau) and mini-mental state examination (MMSE) scores.
MIF levels were increased in MCI (p < 0.01), AD (p < 0.05), and DLB (p > 0.05) compared to controls. Levels of sTREM1 were specifically increased in AD compared to controls (p < 0.01), MCI (p < 0.05), and DLB patients (p > 0.05), while sTREM2 levels were increased specifically in MCI compared to all other groups (all p < 0.001). Neuroinflammatory proteins were highly correlated with CSF pTau levels (MIF: all groups; sTREM1: MCI, AD and DLB; sTREM2: controls, MCI and DLB). Correlations with MMSE scores were observed in specific clinical groups (MIF in controls, sTREM1 in AD, and sTREM2 in DLB).
Inflammatory-related proteins show diverse expression profiles along different AD stages, with increased protein levels in the MCI stage (MIF and sTREM2) and AD stage (MIF and sTREM1). The associations of these inflammatory markers primarily with CSF pTau levels indicate an intertwined relationship between tau pathology and inflammation. These neuroinflammatory markers might be useful in clinical trials to capture dynamics in inflammatory responses or monitor drug-target engagement of inflammatory modulators.
Hok-A-Hin YS
,Del Campo M
,Boiten WA
,Stoops E
,Vanhooren M
,Lemstra AW
,van der Flier WM
,Teunissen CE
... -
《Journal of Neuroinflammation》
Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer's type.
Increased peripheral and central nervous system cortisol levels have been reported in Alzheimer's disease (AD) and may reflect dysfunction of cerebral components of the hypothalamic-pituitary-adrenal (HPA) axis. However, brain exposure to high cortisol concentrations may also accelerate disease progression and cognitive decline. The objectives of this study were to investigate whether HPA-axis dysregulation occurs at early clinical stages of AD and whether plasma and CSF cortisol levels are associated with clinical disease progression. Morning plasma and CSF cortisol concentrations were obtained from the subjects with AD dementia, mild cognitive impairment of AD type (MCI-AD), MCI of other type (MCI-O), and controls with normal cognition included in a multicenter study from the German Dementia Competence Network. A clinical and neuropsychological follow-up was performed in a subgroup of participants with MCI-AD, MCI-O, and AD dementia. CSF cortisol concentrations were increased in the subjects with AD dementia or MCI-AD compared with subjects with MCI-O or normal cognition. After controlling for possible confounders including CSF measures of amyloid beta1-42 and total tau, higher baseline CSF cortisol levels were associated with faster clinical worsening and cognitive decline in MCI-AD. The findings suggest that HPA-axis dysregulation occurs at the MCI stage of AD and may accelerate disease progression and cognitive decline.
Popp J
,Wolfsgruber S
,Heuser I
,Peters O
,Hüll M
,Schröder J
,Möller HJ
,Lewczuk P
,Schneider A
,Jahn H
,Luckhaus C
,Perneczky R
,Frölich L
,Wagner M
,Maier W
,Wiltfang J
,Kornhuber J
,Jessen F
... -
《-》