COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa.

来自 PUBMED

作者:

Hainzl SPeking PKocher TMurauer EMLarcher FDel Rio MDuarte BSteiner MKlausegger ABauer JWReichelt JKoller U

展开

摘要:

Designer nucleases allow specific and precise genomic modifications and represent versatile molecular tools for the correction of disease-associated mutations. In this study, we have exploited an ex vivo CRISPR/Cas9-mediated homology-directed repair approach for the correction of a frequent inherited mutation in exon 80 of COL7A1, which impairs type VII collagen expression, causing the severe blistering skin disease recessive dystrophic epidermolysis bullosa. Upon CRISPR/Cas9 treatment of patient-derived keratinocytes, using either the wild-type Cas9 or D10A nickase, corrected single-cell clones expressed and secreted similar levels of type VII collagen as control keratinocytes. Transplantation of skin equivalents grown from corrected keratinocytes onto immunodeficient mice showed phenotypic reversion with normal localization of type VII collagen at the basement membrane zone, compared with uncorrected keratinocytes, as well as fully stratified and differentiated skin layers without indication of blister development. Next-generation sequencing revealed on-target efficiency of up to 30%, whereas nuclease-mediated off-target site modifications at predicted genomic loci were not detected. These data demonstrate the potential of the CRISPR/Cas9 technology as a possible ex vivo treatment option for genetic skin diseases in the future.

收起

展开

DOI:

10.1016/j.ymthe.2017.07.005

被引量:

47

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(289)

参考文献(45)

引证文献(47)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读