Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》
Mobility training for increasing mobility and functioning in older people with frailty.
Frailty is common in older people and is characterised by decline across multiple body systems, causing decreased physiological reserve and increased vulnerability to adverse health outcomes. It is estimated that 21% of the community-dwelling population over 65 years are frail. Frailty is independently predictive of falls, worsening mobility, deteriorating functioning, impaired activities of daily living, and death. The World Health Organization's International Classification of Functioning, Disability and Health (ICF) defines mobility as: changing and maintaining a body position, walking, and moving. Common interventions used to increase mobility include functional exercises, such as sit-to-stand, walking, or stepping practice.
To summarise the evidence for the benefits and safety of mobility training on overall functioning and mobility in frail older people living in the community.
We searched CENTRAL, MEDLINE, Embase, AMED, PEDro, US National Institutes of Health Ongoing Trials Register, and the World Health Organization International Clinical Trials Registry Platform (June 2021).
We included randomised controlled trials (RCTs) evaluating the effects of mobility training on mobility and function in frail people aged 65+ years living in the community. We defined community as those residing either at home or in places that do not provide rehabilitative services or residential health-related care, for example, retirement villages, sheltered housing, or hostels. DATA COLLECTION AND ANALYSIS: We undertook an 'umbrella' comparison of all types of mobility training versus control.
This review included 12 RCTs, with 1317 participants, carried out in 9 countries. The median number of participants in the trials was 97. The mean age of the included participants was 82 years. The majority of trials had unclear or high risk of bias for one or more items. All trials compared mobility training with a control intervention (defined as one that is not thought to improve mobility, such as general health education, social visits, very gentle exercise, or "sham" exercise not expected to impact on mobility). High-certainty evidence showed that mobility training improves the level of mobility upon completion of the intervention period. The mean mobility score was 4.69 in the control group, and with mobility training, this score improved by 1.00 point (95% confidence interval (CI) 0.51 to 1.51) on the Short Physical Performance Battery (on a scale of 0 to 12; higher scores indicate better mobility levels) (12 studies, 1151 participants). This is a clinically significant change (minimum clinically important difference: 0.5 points; absolute improvement of 8% (4% higher to 13% higher); number needed to treat for an additional beneficial outcome (NNTB) 5 (95% CI 3.00 to 9.00)). This benefit was maintained at six months post-intervention. Moderate-certainty evidence (downgraded for inconsistency) showed that mobility training likely improves the level of functioning upon completion of the intervention. The mean function score was 86.1 in the control group, and with mobility training, this score improved by 8.58 points (95% CI 3.00 to 14.30) on the Barthel Index (on a scale of 0 to 100; higher scores indicate better functioning levels) (9 studies, 916 participants) (absolute improvement of 9% (3% higher to 14% higher)). This result did not reach clinical significance (9.8 points). This benefit did not appear to be maintained six months after the intervention. We are uncertain of the effect of mobility training on adverse events as we assessed the certainty of the evidence as very low (downgraded one level for imprecision and two levels for bias). The number of events was 771 per 1000 in the control group and 562 per 1000 in the group with mobility training (risk ratio (RR) 0.74, 95% CI 0.63 to 0.88; 2 studies, 225 participants) (absolute difference of 19% fewer (9% fewer to 26% fewer)). Mobility training may result in little to no difference in the number of people who are admitted to nursing care facilities at the end of the intervention period as the 95% confidence interval includes the possibility of both a reduced and increased number of admissions to nursing care facilities (low-certainty evidence, downgraded for imprecision and bias). The number of events was 248 per 1000 in the control group and 208 per 1000 in the group with mobility training (RR 0.84, 95% CI 0.53 to 1.34; 1 study, 241 participants) (absolute difference of 4% fewer (8% more to 12% fewer)). Mobility training may result in little to no difference in the number of people who fall as the 95% confidence interval includes the possibility of both a reduced and increased number of fallers (low-certainty evidence, downgraded for imprecision and study design limitations). The number of events was 573 per 1000 in the control group and 584 per 1000 in the group with mobility training (RR 1.02, 95% CI 0.87 to 1.20; 2 studies, 425 participants) (absolute improvement of 1% (12% more to 7% fewer)). Mobility training probably results in little to no difference in the death rate at the end of the intervention period as the 95% confidence interval includes the possibility of both a reduced and increased death rate (moderate-certainty evidence, downgraded for bias). The number of events was 51 per 1000 in the control group and 59 per 1000 in the group with mobility training (RR 1.16, 95% CI 0.64 to 2.10; 6 studies, 747 participants) (absolute improvement of 1% (6% more to 2% fewer)).
The data in the review supports the use of mobility training for improving mobility in a frail community-dwelling older population. High-certainty evidence shows that compared to control, mobility training improves the level of mobility, and moderate-certainty evidence shows it may improve the level of functioning in frail community-dwelling older people. There is moderate-certainty evidence that the improvement in mobility continues six months post-intervention. Mobility training may make little to no difference to the number of people who fall or are admitted to nursing care facilities, or to the death rate. We are unsure of the effect on adverse events as the certainty of evidence was very low.
Treacy D
,Hassett L
,Schurr K
,Fairhall NJ
,Cameron ID
,Sherrington C
... -
《Cochrane Database of Systematic Reviews》