Characterisation of clinical isolates of oxacillin-susceptible mecA-positive Staphylococcus aureus in China from 2009 to 2014.

来自 PUBMED

作者:

Song YCui LLv YLi YXue F

展开

摘要:

The aim of this study was to investigate the prevalence and molecular characteristics of clinical oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) isolates in China from July 2009 to June 2014. A total of 2068 non-duplicate S. aureus isolates were collected from 21 hospitals. Antimicrobial susceptibility testing was performed by the agar dilution method. All OS-MRSA strains were screened for the presence of the genes mecA, mecC and nuc as well as the Panton-Valentine leukocidin gene (pvl). Staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) typing and multilocus sequence typing (MLST) were performed to analyse the isolate genotypes. A total of 34 S. aureus isolates were mecA-positive but were susceptible to oxacillin [minimum inhibitory concentration (MIC)≤2mg/L]. All OS-MRSA isolates were resistant to cefoxitin and most were also multiresistant to other antibiotics besides β-lactams. Among the 34 OS-MRSA isolates, nine spa and three SCCmec types were detected and, combined with MLST, ST338/59-t437-SCCmecV (47%; 16/34) was the predominant clone. In addition, 17 strains (50%) carried the pvl gene. The most frequent clone of OS-MRSA isolates in China was ST338-t437-SCCmecV. Most of the OS-MRSA isolates were susceptible to the majority of antibacterial agents except macrolides, clindamycin and chloramphenicol.

收起

展开

DOI:

10.1016/j.jgar.2017.05.009

被引量:

12

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1121)

参考文献(0)

引证文献(12)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读