A simplified clinical prediction rule for prognosticating independent walking after spinal cord injury: a prospective study from a Canadian multicenter spinal cord injury registry.

来自 PUBMED

作者:

Hicks KEZhao YFallah NRivers CSNoonan VKPlashkes TWai EKRoffey DMTsai ECPaquet JAttabib NMarion TAhn HPhan PRHSCIR Network

展开

摘要:

Traumatic spinal cord injury (SCI) is a debilitating condition with limited treatment options for neurologic or functional recovery. The ability to predict the prognosis of walking post injury with emerging prediction models could aid in rehabilitation strategies and reintegration into the community. To revalidate an existing clinical prediction model for independent ambulation (van Middendorp et al., 2011) using acute and long-term post-injury follow-up data, and to investigatethe accuracy of a simplified model using prospectively collected data from a Canadian multicenter SCI database, the Rick Hansen Spinal Cord Injury Registry (RHSCIR). Prospective cohort study. The analysis cohort consisted of 278 adult individuals with traumatic SCI enrolled in the RHSCIR for whom complete neurologic examination data and Functional Independence Measure (FIM) outcome data were available. The FIM locomotor score was used to assess independent walking ability (defined as modified or complete independence in walk or combined walk and wheelchair modality) at 1-year follow-up for each participant. A logistic regression (LR) model based on age and four neurologic variables was applied to our cohort of 278 RHSCIR participants. Additionally, a simplified LR model was created. The Hosmer-Lemeshow goodness of fit test was used to check if the predictive model is applicable to our data set. The performance of the model was verified by calculating the area under the receiver operating characteristic curve (AUC). The accuracy of the model was tested using a cross-validation technique. This study was supported by a grant from The Ottawa Hospital Academic Medical Organization ($50,000 over 2 years). The RHSCIR is sponsored by the Rick Hansen Institute and is supported by funding from Health Canada, Western Economic Diversification Canada, and the provincial governments of Alberta, British Columbia, Manitoba, and Ontario. ET and JP report receiving grants from the Rick Hansen Institute (approximately $60,000 and $30,000 per year, respectively). DMR reports receiving remuneration for consulting services provided to Palladian Health, LLC and Pacira Pharmaceuticals, Inc ($20,000-$30,000 annually), although neither relationship presents a potential conflict of interest with the submitted work. KEH received a grant for involvement in the present study from the Government of Canada as part of the Canada Summer Jobs Program ($3,000). JP reports receiving an educational grant from Medtronic Canada outside of the submitted work ($75,000 annually). TM reports receiving educational fellowship support from AO Spine, AO Trauma, and Medtronic; however, none of these relationships are financial in nature. All remaining authors have no conflicts of interest to disclose. The fitted prediction model generated 85% overall classification accuracy, 79% sensitivity, and 90% specificity. The prediction model was able to accurately classify independent walking ability (AUC 0.889, 95% confidence interval [CI] 0.846-0.933, p<.001) compared with the existing prediction model, despite the use of a different outcome measure (FIM vs. Spinal Cord Independence Measure) to qualify walking ability. A simplified, three-variable LR model based on age and two neurologic variables had an overall classification accuracy of 84%, with 76% sensitivity and 90% specificity, demonstrating comparable accuracy with its five-variable prediction model counterpart. The AUC was 0.866 (95% CI 0.816-0.916, p<.01), only marginally less than that of the existing prediction model. A simplified predictive model with similar accuracy to a more complex model for predicting independent walking was created, which improves utility in a clinical setting. Such models will allow clinicians to better predict the prognosis of ambulation in individuals who have sustained a traumatic SCI.

收起

展开

DOI:

10.1016/j.spinee.2017.05.031

被引量:

31

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1063)

参考文献(0)

引证文献(31)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读