Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients.

来自 PUBMED

作者:

Fan MWu GCheng HZhang JShao GLi L

展开

摘要:

To enhance the accurate prediction of the response to neoadjuvant chemotherapy (NAC) in breast cancer patients by using a quantitative analysis of dynamic enhancement magnetic resonance imaging (DCE-MRI). A dataset of 57 cancer patients with breast DCE-MR images acquired before NAC was used. Among them, 47 patients were Responders, and 10 patients were non-Responders based on the RECIST criteria. The breast regions were segmented on the MR images, and a total of 158 radiomic features were computed to represent the morphologic, dynamic, and the texture of the tumors as well as the background parenchymal features. The optimal subset of features was selected using evolutionary based Wrapper Subset Evaluator. The classifier was trained and tested using a leave-one-out cross-validation (LOOCV) method to classify Responder and non-Responder cases. The area under a receiver operating characteristic curve (AUC) was computed to assess the classifier performance. An additional independent dataset with 46 patients was also included to validate the results. The evolutionary algorithm (EA)-based method identified optimal subsets comprising 12 image features that were fit for classification for the main cohort. Following the same feature selection procedure, the independent validation dataset produced 11 image features, 7 of which were identical to those from the main cohort. The classifier based on the features yield a LOOCV AUC of 0.910 and 0.874 for the main and the reproducibility study cohort, respectively. If the optimal features in the main cohort were utilized to test performance on the reproducibility cohort, the classifier generated an AUC of 0.713. While the features developed in the reproducibility cohort were applied to test the main cohort, the classifier achieved an AUC of 0.683. The AUC of the averaged receiver operating characteristic (ROC) curve for the two data cohort was 0.703. This study demonstrated that quantitative analyses of radiomic features from pretreatment breast DCE-MRI data could be used as valuable image markers that are associated with tumor response to NAC.

收起

展开

DOI:

10.1016/j.ejrad.2017.06.019

被引量:

56

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(362)

参考文献(0)

引证文献(56)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读