Gene Editing With TALEN and CRISPR/Cas in Rice.
摘要:
Engineered, site-specific nucleases induce genomic double-strand DNA breaks and break repair processes enable genome editing in a plethora of eukaryotic genomes. TALENs (transcription activator-like effector nucleases) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) are potent biotechnological tools used for genome editing. In rice, species-tailored editing tools have proven to be efficient and easy to use. Both tools are capable of generating DNA double-strand breaks (DSBs) in vivo and such breaks can be repaired either by error-prone NHEJ (nonhomologous end joining) that leads to nucleotide insertions or deletions or by HDR (homology-directed repair) if an appropriate exogenous DNA template is provided. NHEJ repair often results in gene knockout, while HDR results in precise nucleotide sequence or gene replacement. In this review, we revisit the molecular mechanisms underlying DSB repair in eukaryotes and review the TALEN and CRISPR technologies (CRISPR/Cas9, CRISPR/Cpf1, and Base Editor) developed and utilized for genome editing by scientists in rice community.
收起
展开
DOI:
10.1016/bs.pmbts.2017.04.006
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(1677)
参考文献(0)
引证文献(13)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无