Emergence of carbapenem-resistant Acinetobacter baumannii ST787 in clinical isolates from blood in a tertiary teaching hospital in Northern Taiwan.

来自 PUBMED

作者:

Hu YFHou CJKuo CFWang NYWu AYLeung CHLiu CPYeh HI

展开

摘要:

The purpose of this study is to investigate the predominant clones of carbapenem-resistant Acinetobacter baumannii (CRAB) in our hospital in Taiwan by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) technique. We collected 108 non-duplicate A. baumannii clinical blood isolates from January 2012 to December 2013 in MacKay Memorial Hospital. PFGE and MLST were used for typing the A. baumannii isolates and for investigation of the predominant clones. Bacteria isolates were screened by polymerase chain reaction for the presence of the carbapenemase-encoding genes. All 108 isolates were classified as 33 pulsotypes by PFGE. The predominant clones were pulsotype 10 (12.04%) in 2012 and pulsotype 8 (16.67%) in 2013, respectively. The 31 predominant pulsotype isolates were typed by MLST, and ST787 (54.84%) and ST455 (45.16%) were identified. All isolates carried blaOXA-51-like genes, and blaOXA-23-like genes was founded in 101 isolates (93.52%). Other identified resistance genes included blaOXA-24-like and blaOXA-IMP. To the best of our knowledge, this study is the first to describe the microbiological characteristics of CRAB ST787, which carried high genetic resistance to carbapenem, but remained susceptible to colistin. CRAB ST787 was the predominant clone in our hospital in the study period.

收起

展开

DOI:

10.1016/j.jmii.2016.08.025

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(455)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读