MiR-21 promotes fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis by activating IL-6 expression.

来自 PUBMED

作者:

Sun CTian JLiu XGuan G

展开

摘要:

The molecular mechanism underlying the fibrosis of ligamentum flavum(LF) in patients with lumbar spinal canal stenosis(LSCS) remains unknown. MicroRNAs are reported to play important roles in regulating fibrosis in different organs. The present study aimed to identify fibrosis related miR-21 expression profile and investigate the pathological process of miR-21 in the fibrosis of LF hypertrophy and associated regulatory mechanisms. 15 patients with LSCS underwent surgical treatment were enrolled in this study. For the control group, 11 patients with lumbar disc herniation(LDH) was included. The LF thickness was measured on MRI. LF samples were obtained during the surgery. Fibrosis score was assessed by Masson's trichrome staining. The expression of miR-21 in LF tissues were determined by RT-PCR. Correlation among LF thickness, fibrosis score, and miR-21 expression was analyzed. In addition, Lentiviral vectors for miR-21 mimic were constructed and transfected into LF cells to examine the role of miR-21 in LF fibrosis. Types I and III collagen were used as indicators of fibrosis. IL-6 expression in LF cells after transfection was investigated by RT-PCR and ELISA. Patients in two groups showed similar outcomes regarding age, gender, level of LF tissue. The thickness and fibrosis score of LF in the LSCS group were significantly greater than those in LDH group (all P < 0.05). Similarly, the expression of miR-21 in LSCS group was substantially higher than that in LDH group(P < 0.05). Furthermore, the miR-21 expression exhibited positive correlations with the LF thickness (r = 0.595, P < 0.05) and fibrosis score (r = 0.608, P < 0.05). Of note, miR-21 over-expression increased the expression levels of collagen I and III (P < 0.05). Also, IL-6 expression and secretion in LF cells was elevated after transfection of miR-21 mimic. MiR-21 is a fibrosis-associated miRNA and promotes inflammation in LF tissue by activating IL-6 expression, leading to LF fibrosis and hypertrophy.

收起

展开

DOI:

10.1016/j.bbrc.2017.06.182

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(246)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读