miR-489 inhibits proliferation, cell cycle progression and induces apoptosis of glioma cells via targeting SPIN1-mediated PI3K/AKT pathway.
microRNA-489 (miR-489), a newly identified tumor-related miRNA, functions as an oncogene or tumor suppressor via regulating growth and metastasis of human cancers. But, the clinical significance, biological function and underlying mechanisms of miR-489 in glioma remain rarely known. Here, we showed that the levels of miR-489 in glioma tissues were notably underexpressed compared to corresponding non-tumor tissues. In accordance, the relative levels of miR-489 were decreased in glioma cell lines compared with NHA cells. Kaplan-Meier plots indicated that miR-489 low expressing glioma patients showed a prominent shorter overall survival. In addition, miR-489 overexpression prohibited proliferation and cell cycle progression, and promoted apoptosis in U251 cells. While, miR-489 knockdown showed opposite effects on these cellular processes of U87 cells. In vivo experiments demonstrated that miR-489 restoration reduced the tumor volume and weight of subcutaneous glioma xenografts in nude mice. Notably, Spindlin 1 (SPIN1) was inversely and directly regulated by miR-489 in glioma cells. A negative correlation between the expression of miR-489 and SPIN1 mRNA was confirmed in glioma tissues. Interestingly, miR-489 inversely modulated activation of PI3K/AKT pathway and expression of downstream targets including p-mTOR, Cyclin D1 and BCL-XL. SPIN1 re-expression abolished the effects of miR-489 on U251 cells with enhanced activation of PI3K/AKT pathway and malignant phenotype. Meanwhile, AKT inhibitor MK-2206 blocked activation of PI3K/AKT pathway and resulted in reduced proliferation, cell cycle arrest and increased apoptosis in miR-489 down-regulating U87 cells. Altogether, our data support that miR-489 loss facilitates malignant phenotype of glioma cells probably via SPIN1-mediated PI3K/AKT pathway.
Li Y
,Ma X
,Wang Y
,Li G
... -
《-》
Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer.
Drug resistance is one of the major obstacles for improving the prognosis of breast cancer patients. Increasing evidence has linked the association of aberrantly expressed microRNAs (miRNAs) with tumour development and progression as well as chemoresistance. Despite recent advances, there is still little known about the potential role and mechanism of miRNAs in breast cancer chemoresistance. Here we describe that 16 miRNAs were found to be significantly down-regulated and 11 up-regulated in drug-resistant breast cancer tissues compared with drug-sensitive tissues, using a miRNA microarray. The results also showed miR-489 to be one of the most down-regulated miRNAs in drug-resistant tissues and cell lines, as confirmed by miRNA microarray screening and real-time quantitative PCR. A decrease in miR-489 expression was associated with chemoresistance as well as lymph node metastasis, increased tumour size, advanced pTNM stage and poor prognosis in breast cancer. Functional analysis revealed that miR-489 increased breast cancer chemosensitivity and inhibited cell proliferation, migration and invasion, both in vitro and in vivo. Furthermore, SPIN1, VAV3, BCL2 and AKT3 were found to be direct targets of miR-489. SPIN1 was significantly elevated in drug-resistant and metastatic breast cancer tissues and inversely correlated with miR-489 expression. High expression of SPIN1 was associated with higher histological grade, lymph node metastasis, advanced pTNM stage and positive progesterone receptor (PR) status. Increased SPIN1 expression enhanced cell migration and invasion, inhibited apoptosis and partially antagonized the effects of miR-489 in breast cancer. PIK3CA, AKT, CREB1 and BCL2 in the PI3K-Akt signalling pathway, demonstrated to be elevated in drug-resistant breast cancer tissues, were identified as downstream effectors of SPIN1. It was further found that either inhibition of SPIN1 or overexpression of miR-489 suppressed the PI3K-Akt signalling pathway. These data indicate that miR-489 could reverse the chemoresistance of breast cancer via the PI3K-Akt pathway by targeting SPIN1. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Chen X
,Wang YW
,Xing AY
,Xiang S
,Shi DB
,Liu L
,Li YX
,Gao P
... -
《-》
miR-372 regulates glioma cell proliferation and invasion by directly targeting PHLPP2.
MicroRNAs are known to be involved in carcinogenesis and tumor progression in glioma. Recently, microRNA-372 (miR-372) has been proved to play a substantial role in several human cancers, but its functions in glioma remain unclear. In this study, we confirmed that miR-372 was commonly upregulated in glioma cell lines and tissues. Downregulation of miR-372 markedly inhibited cell proliferation and invasion and induced G1/S arrest and apoptosis. Consistently, the xenograft mouse model also unveiled the suppressive effects of miR-372 knockdown on tumor growth. Further studies revealed that miR-372 modulated the expression of PHLPP2 by directly targeting its 3'-untranslated region (3'-UTR) and that miR-372 expression was inversely correlated with PHLPP2 expression in glioma samples. Silencing of PHLPP2 could rescue the inhibitory effect of miR-372 inhibitor. Moreover, miR-372 knockdown suppressed the phosphorylation levels of the major components of PI3K/Akt pathway including Akt, mTOR, and P70S6K. Taken together, our results suggest that miR-372 functions as an oncogenic miRNA through targeting PHLPP2 in glioma.
Chen X
,Hao B
,Han G
,Liu Y
,Dai D
,Li Y
,Wu X
,Zhou X
,Yue Z
,Wang L
,Cao Y
,Liu J
... -
《-》
MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.
Our study aims to investigate the effect of microRNA-21 (miR-21) on the proliferation, senescence, and apoptosis of glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.
Glioma tissues and brain tissues were collected for this study after surgical decompression for traumatic brain injury. RT-qPCR was employed to measure mRNA levels of miR-21, SPRY1, PTEN, PI3K, and AKT, and Western blotting was conducted to determine protein levels of SPRY1, PTEN, PI3K, AKT, p-AKT, Caspase-3, Caspase-9, P53, GSK3, and p-GSK3. Human glioma U87 cells were assigned into the blank, negative control (NC), miR-21 mimics, miR-21 inhibitors, siRNA-SPRY1, and miR-21 inhibitors + siRNA-SPRY1 groups, with human HEB cells serving as the normal group. Cell proliferation, cell cycle, and apoptosis were determined by MTT and flow cytometry, respectively.
Compared with control group, an increased expression of miR-21, PI3K, AKT, p-AKT, P53, and p-GSK3, and a decreased expression of SPRY1, PTEN, Caspase-3, and Caspase-9 were observed in the glioma group, and no significant differences were found in the expression of GSK3. SPRY1 was verified to be the target gene of miR-21. Compared with the blank and NC groups, levels of PI3K, AKT, p-AKT, P53, and p-GSK3 increased while levels of SPRY1, PTEN, Caspase-3, and Caspase-9 decreased in the miR-21 mimics and siRNA-SPRY1 groups; the miR-21 inhibitors group reversed the tendency; furthermore, the miR-21 inhibitors group showed decreased cell proliferation but promoted apoptosis, which were opposite to the results of the miR-21 mimics and siRNA-SPRY1 groups.
MicroRNA-21 might promote cell proliferation and inhibit cell senescence and apoptosis of human glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.
Chai C
,Song LJ
,Han SY
,Li XQ
,Li M
... -
《-》