Low-dose oral misoprostol for induction of labour.
Misoprostol given orally is a commonly used labour induction method. Our Cochrane Review is restricted to studies with low-dose misoprostol (initially ≤ 50 µg), as higher doses pose unacceptably high risks of uterine hyperstimulation.
To assess the efficacy and safety of low-dose oral misoprostol for labour induction in women with a viable fetus in the third trimester of pregnancy.
We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (14 February 2021) and reference lists of retrieved studies.
Randomised trials comparing low-dose oral misoprostol (initial dose ≤ 50 µg) versus placebo, vaginal dinoprostone, vaginal misoprostol, oxytocin, or mechanical methods; or comparing oral misoprostol protocols (one- to two-hourly versus four- to six-hourly; 20 µg to 25 µg versus 50 µg; or 20 µg hourly titrated versus 25 µg two-hourly static).
Using Covidence, two review authors independently screened reports, extracted trial data, and performed quality assessments. Our primary outcomes were vaginal birth within 24 hours, caesarean section, and hyperstimulation with foetal heart changes.
We included 61 trials involving 20,026 women. GRADE assessments ranged from moderate- to very low-certainty evidence, with downgrading decisions based on imprecision, inconsistency, and study limitations. Oral misoprostol versus placebo/no treatment (four trials; 594 women) Oral misoprostol may make little to no difference in the rate of caesarean section (risk ratio (RR) 0.81, 95% confidence interval (CI) 0.59 to 1.11; 4 trials; 594 women; moderate-certainty evidence), while its effect on uterine hyperstimulation with foetal heart rate changes is uncertain (RR 5.15, 95% CI 0.25 to 105.31; 3 trials; 495 women; very low-certainty evidence). Vaginal births within 24 hours was not reported. In all trials, oxytocin could be commenced after 12 to 24 hours and all women had pre-labour ruptured membranes. Oral misoprostol versus vaginal dinoprostone (13 trials; 9676 women) Oral misoprostol probably results in fewer caesarean sections (RR 0.84, 95% CI 0.78 to 0.90; 13 trials, 9676 women; moderate-certainty evidence). Subgroup analysis indicated that 10 µg to 25 µg (RR 0.80, 95% CI 0.74 to 0.87; 9 trials; 8652 women) may differ from 50 µg (RR 1.10, 95% CI 0.91 to 1.34; 4 trials; 1024 women) for caesarean section. Oral misoprostol may decrease vaginal births within 24 hours (RR 0.93, 95% CI 0.87 to 1.00; 10 trials; 8983 women; low-certainty evidence) and hyperstimulation with foetal heart rate changes (RR 0.49, 95% CI 0.40 to 0.59; 11 trials; 9084 women; low-certainty evidence). Oral misoprostol versus vaginal misoprostol (33 trials; 6110 women) Oral use may result in fewer vaginal births within 24 hours (average RR 0.81, 95% CI 0.68 to 0.95; 16 trials, 3451 women; low-certainty evidence), and less hyperstimulation with foetal heart rate changes (RR 0.69, 95% CI 0.53 to 0.92, 25 trials, 4857 women, low-certainty evidence), with subgroup analysis suggesting that 10 µg to 25 µg orally (RR 0.28, 95% CI 0.14 to 0.57; 6 trials, 957 women) may be superior to 50 µg orally (RR 0.82, 95% CI 0.61 to 1.11; 19 trials; 3900 women). Oral misoprostol probably does not increase caesarean sections overall (average RR 1.00, 95% CI 0.86 to 1.16; 32 trials; 5914 women; low-certainty evidence) but likely results in fewer caesareans for foetal distress (RR 0.74, 95% CI 0.55 to 0.99; 24 trials, 4775 women). Oral misoprostol versus intravenous oxytocin (6 trials; 737 women, 200 with ruptured membranes) Misoprostol may make little or no difference to vaginal births within 24 hours (RR 1.12, 95% CI 0.95 to 1.33; 3 trials; 466 women; low-certainty evidence), but probably results in fewer caesarean sections (RR 0.67, 95% CI 0.50 to 0.90; 6 trials; 737 women; moderate-certainty evidence). The effect on hyperstimulation with foetal heart rate changes is uncertain (RR 0.66, 95% CI 0.19 to 2.26; 3 trials, 331 women; very low-certainty evidence). Oral misoprostol versus mechanical methods (6 trials; 2993 women) Six trials compared oral misoprostol to transcervical Foley catheter. Misoprostol may increase vaginal birth within 24 hours (RR 1.32, 95% CI 0.98 to 1.79; 4 trials; 1044 women; low-certainty evidence), and probably reduces the risk of caesarean section (RR 0.84, 95% CI 0.75 to 0.95; 6 trials; 2993 women; moderate-certainty evidence). There may be little or no difference in hyperstimulation with foetal heart rate changes (RR 1.31, 95% CI 0.78 to 2.21; 4 trials; 2828 women; low-certainty evidence). Oral misoprostol one- to two-hourly versus four- to six-hourly (1 trial; 64 women) The evidence on hourly titration was very uncertain due to the low numbers reported. Oral misoprostol 20 µg hourly titrated versus 25 µg two-hourly static (2 trials; 296 women) The difference in regimen may have little or no effect on the rate of vaginal births in 24 hours (RR 0.97, 95% CI 0.80 to 1.16; low-certainty evidence). The evidence is of very low certainty for all other reported outcomes.
Low-dose oral misoprostol is probably associated with fewer caesarean sections (and therefore more vaginal births) than vaginal dinoprostone, and lower rates of hyperstimulation with foetal heart rate changes. However, time to birth may be increased, as seen by a reduced number of vaginal births within 24 hours. Compared to transcervical Foley catheter, low-dose oral misoprostol is associated with fewer caesarean sections, but equivalent rates of hyperstimulation. Low-dose misoprostol given orally rather than vaginally is probably associated with similar rates of vaginal birth, although rates may be lower within the first 24 hours. However, there is likely less hyperstimulation with foetal heart changes, and fewer caesarean sections performed due to foetal distress. The best available evidence suggests that low-dose oral misoprostol probably has many benefits over other methods for labour induction. This review supports the use of low-dose oral misoprostol for induction of labour, and demonstrates the lower risks of hyperstimulation than when misoprostol is given vaginally. More trials are needed to establish the optimum oral misoprostol regimen, but these findings suggest that a starting dose of 25 µg may offer a good balance of efficacy and safety.
Kerr RS
,Kumar N
,Williams MJ
,Cuthbert A
,Aflaifel N
,Haas DM
,Weeks AD
... -
《Cochrane Database of Systematic Reviews》
Mechanical methods for induction of labour.
Mechanical methods were the first methods developed to ripen the cervix and induce labour. During recent decades they have been substituted by pharmacological methods. Potential advantages of mechanical methods, compared with pharmacological methods may include reduction in side effects that could improve neonatal outcomes. This is an update of a review first published in 2001, last updated in 2012.
To determine the effectiveness and safety of mechanical methods for third trimester (> 24 weeks' gestation) induction of labour in comparison with prostaglandin E2 (PGE2) (vaginal and intracervical), low-dose misoprostol (oral and vaginal), amniotomy or oxytocin.
For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP), and reference lists of retrieved studies (9 January 2018). We updated the search in March 2019 and added the search results to the awaiting classification section of the review.
Clinical trials comparing mechanical methods used for third trimester cervical ripening or labour induction with pharmacological methods. Mechanical methods include: (1) the introduction of a catheter through the cervix into the extra-amniotic space with balloon insufflation; (2) introduction of laminaria tents, or their synthetic equivalent (Dilapan), into the cervical canal; (3) use of a catheter to inject fluid into the extra-amniotic space (EASI). This review includes the following comparisons: (1) specific mechanical methods (balloon catheter, laminaria tents or EASI) compared with prostaglandins (different types, different routes) or with oxytocin; (2) single balloon compared to a double balloon; (3) addition of prostaglandins or oxytocin to mechanical methods compared with prostaglandins or oxytocin alone.
Two review authors independently assessed trials for inclusion and assessed risk of bias. Two review authors independently extracted data and assessed the quality of the evidence using the GRADE approach.
This review includes a total of 112 trials, with 104 studies contributing data (22,055 women; 21 comparisons). Risk of bias of trials varied. Overall, the evidence was graded from very-low to moderate quality. All evidence was downgraded for lack of blinding and, for many comparisons, the effect estimates were too imprecise to make a valid judgement. Balloon versus vaginal PGE2: there may be little or no difference in vaginal deliveries not achieved within 24 hours (risk ratio (RR) 1.01, 95% confidence interval (CI) 0.82 to 1.26; 7 studies; 1685 women; low-quality evidence) and there probably is little or no difference in caesarean sections (RR 1.00, 95% CI 0.92 to 1.09; 28 studies; 6619 women; moderate-quality evidence) between induction of labour with a balloon catheter and vaginal PGE2. A balloon catheter probably reduces the risk of uterine hyperstimulation with fetal heart rate (FHR) changes (RR 0.35, 95% CI 0.18 to 0.67; 6 studies; 1966 women; moderate-quality evidence), serious neonatal morbidity or perinatal death (RR 0.48, 95% CI 0.25 to 0.93; 8 studies; 2757 women; moderate-quality evidence) and may slightly reduce the risk of aneonatal intensive care unit (NICU) admission (RR 0.82, 95% CI 0.65 to 1.04; 3647 women; 12 studies; low-quality evidence). It is uncertain whether there is a difference in serious maternal morbidity or death (RR 0.20, 95% CI 0.01 to 4.12; 4 studies; 1481 women) or five-minute Apgar score < 7 (RR 0.74, 95% CI 0.49 to 1.14; 4271 women; 14 studies) because the quality of the evidence was found to be very low and low, respectively. Balloon versus low-dose vaginal misoprostol: it is uncertain whether there is a difference in vaginal deliveries not achieved within 24 hours between induction of labour with a balloon catheter and vaginal misoprostol (RR 1.09, 95% CI 0.85 to 1.39; 340 women; 2 studies; low-quality evidence). A balloon catheter probably reduces the risk of uterine hyperstimulation with FHR changes (RR 0.39, 95% CI 0.18 to 0.85; 1322 women; 8 studies; moderate-quality evidence) but may increase the risk of a caesarean section (RR 1.28, 95% CI 1.02 to 1.60; 1756 women; 12 studies; low-quality evidence). It is uncertain whether there is a difference in serious neonatal morbidity or perinatal death (RR 0.58, 95% CI 0.12 to 2.66; 381 women; 3 studies), serious maternal morbidity or death (no events; 4 studies, 464 women), both very low-quality evidence, and five-minute Apgar score < 7 (RR 1.00, 95% CI 0.50 to 1.97; 941 women; 7 studies) and NICU admissions (RR 1.00, 95% CI 0.61 to 1.63; 1302 women; 9 studies) both low-quality evidence. Balloon versus low-dose oral misoprostol: a balloon catheter probably increases the risk of a vaginal delivery not achieved within 24 hours (RR 1.28, 95% CI 1.13 to 1.46; 782 women, 2 studies, and probably slightly increases the risk of a caesarean section (RR 1.17, 95% CI 1.04 to 1.32; 3178 women; 7 studies; both moderate-quality evidence) when compared to oral misoprostol. It is uncertain whether there is a difference in uterine hyperstimulation with FHR changes (RR 0.81, 95% CI 0.48 to 1.38; 2033 women; 2 studies), serious neonatal morbidity or perinatal death (RR 1.11, 95% CI 0.60 to 2.06; 2627 women; 3 studies), both low-quality evidence, serious maternal morbidity or death (RR 0.50, 95% CI 0.05 to 5.52; 2627 women; 3 studies), very low-quality evidence, five-minute Apgar scores < 7 (RR 0.71, 95% CI 0.38 to 1.32; 2693 women; 4 studies) and NICU admissions (RR 0.82, 95% CI 0.58 to 1.17; 2873 women; 5 studies) both low-quality evidence.
Low- to moderate-quality evidence shows mechanical induction with a balloon is probably as effective as induction of labour with vaginal PGE2. However, a balloon seems to have a more favourable safety profile. More research on this comparison does not seem warranted. Moderate-quality evidence shows a balloon catheter may be slightly less effective as oral misoprostol, but it remains unclear if there is a difference in safety outcomes for the neonate. When compared to low-dose vaginal misoprostol, low-quality evidence shows a balloon may be less effective, but probably has a better safety profile. Future research could be focused more on safety aspects for the neonate and maternal satisfaction.
de Vaan MD
,Ten Eikelder ML
,Jozwiak M
,Palmer KR
,Davies-Tuck M
,Bloemenkamp KW
,Mol BWJ
,Boulvain M
... -
《Cochrane Database of Systematic Reviews》