-
Protective Effects of MicroRNA-126 on Human Cardiac Microvascular Endothelial Cells Against Hypoxia/Reoxygenation-Induced Injury and Inflammatory Response by Activating PI3K/Akt/eNOS Signaling Pathway.
This study explored the protective effects of the microRNA-126 (miR-126)-mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs) against hypoxia/reoxygenation (H/R)-induced injury and the inflammatory response.
Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimic-negative control (NC), miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K) and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD), nitric oxide (NO), vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK-8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test.
Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor-NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell apoptosis, while the miR-126 inhibitor and wortmannin group exhibited the opposite results. Furthermore, decreased p/t-PI3K, p/t-Akt and p/t-eNOS expressions, decreased NO, VEGF and SOD contents, cell proliferation and lumen formation abilities, as well as increased ROS content, increased IL-6, IL-10 and TNF-α expression, and increased cell apoptosis were observed in the miR-126 mimic + wortmannin group compared to themiR-126 mimic group.
These findings indicated that miR-126 protects HCMECs from H/R-induced injury and inflammatory response by activating the PI3K/Akt/ eNOS signaling pathway.
Yang HH
,Chen Y
,Gao CY
,Cui ZT
,Yao JM
... -
《-》
-
Overexpression of microRNA-138 alleviates human coronary artery endothelial cell injury and inflammatory response by inhibiting the PI3K/Akt/eNOS pathway.
This study aimed to investigate the role of miR-138 in human coronary artery endothelial cell (HCAEC) injury and inflammatory response and the involvement of the PI3K/Akt/eNOS signalling pathway. Oxidized low-density lipoprotein (OX-LDL)-induced HCAEC injury models were established and assigned to blank, miR-138 mimic, miR-138 inhibitor, LY294002 (an inhibitor of the PI3K/Akt/eNOS pathway), miR-138 inhibitor + LY294002 and negative control (NC) groups. qRT-PCR and Western blotting were performed to detect the miR-138, PI3K, Akt and eNOS levels and the protein expressions of PI3K, Akt, eNOS, p-Akt, p-eNOS, Bcl-2, Bax and caspase-3. ELISAs were employed to measure the expressions of TNF-α, IL-4, IL-6, IL-8, IL-10 and nitric oxide (NO) and the activities of lactate dehydrogenase (LDH) and eNOS. MTT and flow cytometry were performed to assess the proliferation and apoptosis of HCAECs. Compared to the blank group, PI3K, Akt and eNOS were down-regulated in the miR-138 mimic and LY294002 groups but were up-regulated in the miR-138 inhibitor group. The miR-138 mimic and LY294002 groups showed decreased concentrations of TNF-α, IL-6, IL-8 and NO and reduced activities of LDH and eNOS, while opposite trends were observed in the miR-138 inhibitor group. The concentrations of IL-4 and IL-10 increased in the miR-138 mimic and LY294002 groups but decreased in the miR-138 inhibitor group. The miR-138 mimic and LY294002 groups had significantly decreased cell proliferation and increased cell apoptosis compared to the blank group. These findings indicate that up-regulation of miR-138 alleviates HCAEC injury and inflammatory response by inhibiting the PI3K/Akt/eNOS signalling pathway.
Li JB
,Wang HY
,Yao Y
,Sun QF
,Liu ZH
,Liu SQ
,Zhuang JL
,Wang YP
,Liu HY
... -
《-》
-
MicroRNA-130a alleviates human coronary artery endothelial cell injury and inflammatory responses by targeting PTEN via activating PI3K/Akt/eNOS signaling pathway.
Song CL
,Liu B
,Shi YF
,Liu N
,Yan YY
,Zhang JC
,Xue X
,Wang JP
,Zhao Z
,Liu JG
,Li YX
,Zhang XH
,Wu JD
... -
《Oncotarget》
-
MicroRNA-29b Inhibits Angiogenesis by Targeting VEGFA through the MAPK/ERK and PI3K/Akt Signaling Pathways in Endometrial Carcinoma.
The purpose of this study is to explore the effects of microRNA-29b (miR-29b) regulating MAPK/ERK and PI3K/Akt signaling pathways on angiogenesis in endometrial carcinoma (EC) by targeting VEGFA.
Between February 2013 and April 2015, 126 EC patients admitted to the Second Affiliated Hospital of Nanchang University were randomly selected, with 126 EC tissues and the corresponding adjacent normal tissues collected after surgery. The human EC cell lines RL-95-2 and HEC-1-B and human endometrial cells were assigned to the normal group (human endometrial cells), the blank group (untransfected RL-95-2 or HEC-1-B cells), the pMIR-control group (RL-95-2 or HEC-1-B cells transfected with an empty vector), the pMIR-miR-29b group (RL-95-2 or HEC-1-B cells transfected with the miR-29b plasmid), LNA-control group (RL-95-2 or HEC-1-B cells transfected with an oligonucleotide inhibitors control), the LNA-miR-29b inhibitors group (RL-95-2 or HEC-1-B cells transfected with miRCURY LNATM miR-29b inhibitors), the LNA-miR-29b inhibitors + PD98059 group (RL-95-2 or HEC-1-B cells transfected with miRCURY LNATM miR-29b inhibitors and PD98059, an inhibitor of the MAPK/ERK signaling pathway) and the LNA-miR-29b inhibitors + wortmannin group (RL-95-2 or HEC-1-B cells transfected with miRCURY LNATM miR-29b inhibitors and wortmannin, an inhibitor of the PI3K/Akt signaling pathway). qRT-PCR and Western blotting were conducted to detect the miR-29b expression and the mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2. Immunohistochemistry (IHC) was performed to determine the microvessel density (MVD) expression in the EC tissues, adjacent normal tissues and nude-mice.
Compared with the adjacent normal tissues, miR-29b expression was down-regulated, the mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 were up-regulated, and MVD expression was increased in the EC tissues. Compared with the normal group, miR-29b expression was down-regulated, while the mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 were up-regulated in the other groups. Compared with the blank, pMIR-control and LNA-control groups, miR-29b expression was increased, while mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 were decreased in the pMIR-miR-29b group. The LNA-miR-29b inhibitors group exhibited elevated miR-29b expression and decreased mRNA and protein expressions of VEGFA, ERK, Akt, mTOR and Bcl-2 (All P < 0.05). Additionally, miR-29b expression was reduced in the LNA-miR-29b inhibitors + PD98059 and LNA-miR-29b inhibitors + wortmannin groups. In comparison to the normal group, MVD expression was elevated in the other groups. Compared with the blank, pMIR-control, LNA-control, LNA-miR-29b inhibitors + PD98059 and LNA-miR-29b inhibitors + wortmannin groups, MVD expression was decreased in the pMIR-miR-29b group but increased in the LNA-miR-29b inhibitors group.
Our results indicate that miR-29b negatively modulates the MAPK/ERK and PI3K/Akt signaling pathways to inhibit angiogenesis in EC by targeting VEGFA.
Chen HX
,Xu XX
,Tan BZ
,Zhang Z
,Zhou XD
... -
《-》
-
Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC).
NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis.
The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis.
These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC.
Zhou Y
,Li S
,Li J
,Wang D
,Li Q
... -
《-》