Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models.
摘要:
Dendritic cell (DC)-derived exosomes (DEXs) form a new class of vaccines for cancer immunotherapy. However, their potency in hepatocellular carcinoma (HCC), a life-threatening malignancy with limited treatment options in the clinic that responds poorly to immunotherapy, remains to be investigated. Exosomes derived from α-fetoprotein (AFP)-expressing DCs (DEXAFP) were investigated in three different HCC mouse models systemically. Tumor growth and microenvironment were monitored. DEXAFP elicited strong antigen-specific immune responses and resulted in significant tumor growth retardation and prolonged survival rates in mice with ectopic, orthotopic and carcinogen-induced HCC tumors that displayed antigenic and pathological heterogeneity. The tumor microenvironment was improved in DEXAFP-treated HCC mice, demonstrated by significantly more γ-interferon (IFN-γ)-expressing CD8+ T lymphocytes, elevated levels of IFN-γ and interleukin-2, and fewer CD25+Foxp3+ regulatory T (Treg) cells and decreased levels of interleukin-10 and transforming growth factor-β in tumor sites. Lack of efficacy in athymic nude mice and CD8+ T cell-depleted mice showed that T cells contribute to DEXAFP-mediated antitumor function. Dynamic examination of the antitumor efficacy and the immune microenvironment in DEXAFP-treated orthotopic HCC mice at different time-points revealed a positive correlation between tumor suppression and immune microenvironment. Our findings provide evidence that AFP-enriched DEXs can trigger potent antigen-specific antitumor immune responses and reshape the tumor microenvironment in HCC mice and thus provide a cell-free vaccine option for HCC immunotherapy. Lay summary: Dendritic cell (DC)-derived exosomes (DEXs) form a new class of vaccines for cancer immunotherapy. However, their potency in hepatocellular carcinoma (HCC) remains unknown. Here, we investigated exosomes from HCC antigen-expressing DCs in three different HCC mouse models and proved their feasibility and capability of treating HCC, and thus provide a cell-free vaccine for HCC immunotherapy.
收起
展开
DOI:
10.1016/j.jhep.2017.05.019
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(637)
参考文献(0)
引证文献(188)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无