Spatial patterns of Anchoveta (Engraulis ringens) eggs and larvae in relation to pCO(2) in the Peruvian upwelling system.

来自 PUBMED

作者:

Shen SGThompson ARCorrea JFietzek PAyón PCheckley DM Jr

展开

摘要:

Large and productive fisheries occur in regions experiencing or projected to experience ocean acidification. Anchoveta (Engraulis ringens) constitute the world's largest single-species fishery and live in one of the ocean's highest pCO2 regions. We investigated the relationship of the distribution and abundance of Anchoveta eggs and larvae to natural gradients in pCO2 in the Peruvian upwelling system. Eggs and larvae, zooplankton, and data on temperature, salinity, chlorophyll a and pCO2 were collected during a cruise off Peru in 2013. pCO2 ranged from 167-1392 µatm and explained variability in egg presence, an index of spawning habitat. Zooplankton abundance explained variability in the abundance of small larvae. Within the main spawning and larva habitats (6-10°S), eggs were found in cool, low-salinity, and both extremely low (less than 200 µatm) and high (more than 900 µatm) pCO2 waters, and larvae were collected in warmer, higher salinity, and moderate (400-600 µatm) pCO2 waters. Our data support the hypothesis that Anchoveta preferentially spawned at high pCO2 and these eggs had lower survival. Enhanced understanding of the influence of pCO2 on Anchoveta spawning and larva mortality, together with pCO2 measurements, may enable predictions of ocean acidification effects on Anchoveta and inform adaptive fisheries management.

收起

展开

DOI:

10.1098/rspb.2017.0509

被引量:

1

年份:

2017

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(128)

参考文献(9)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读