SU-E-T-565: Effectiveness of Robust Optimization in Head and Neck IMPT Dose Distributions.

来自 PUBMED

作者:

Liu WFrank SLi XLi YZhang XZhu XMohan R

展开

摘要:

The effectiveness of IMPT may be significantly diminished by range and patient setup uncertainties. The purpose of this presentation is to evaluate the ability of robust optimization methods to desensitize H&N IMPT plans to uncertainties and their impact on plan optimality. We use a robust optimization method, in which the objective function value for a given iteration is computed using the 'worst case' dose distribution. The conventionally optimized PTV-based IMPT plans and robustly optimized plans were generated for 14 head and neck cancer cases. The dose standard deviation was calculated for every voxel and used to compute 'standard-deviation volume histograms' (SVHs). The area under SVH curves was used to quantify the plan robustness. In addition, D1cc doses for spinal cord and brainstem, mean doses Dmean for oral cavity and parotids, and D1% doses for other organs were used to assess plan optimality. D5% and D95% doses are used to assess target dose coverage and homogeneity. The plan optimality and robustness are then compared statistically by the pair t-tests using SPSS 19.0 software. Compared with PTV-based optimization, robust optimization provides significantly more robust dose distribution for both targets and organs without sacrificing, and possibly even improving, the sparing of normal tissues. In addition, our robust optimization method also leads to more homogeneous dose distribution in targets with better prescription dose coverage. Improvements are statistically significant with p-value smaller than 0.05 for almost all end points compared. Robust optimization results in patient-specific, optimizer-determined, and effectively reduced margins compared to a predefined and fixed margin used in the PTV approach. The optimizer can find a desired beamlet weight solution from the degenerate solution space so that the dose distribution follows the changes in anatomical geometry and is minimally perturbed by uncertainties. Our results demonstrate the importance of robust optimization. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD Anderson Cancer Center, and MD Anderson’s cancer center support grant CA0 16672.

收起

展开

DOI:

10.1118/1.4735654

被引量:

0

年份:

2012

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(62)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读