Sci-Sat AM: Brachy - 07: Plastic scintillation detector validation for kV dosimetry.

来自 PUBMED

摘要:

To characterize the plastic scintillation detectors (PSDs) response in the diagnostic energy range. A fast and adaptable method for real-time dosimetry in superficial x-ray therapy and interventional radiology is proposed. A PSD (1 mm diameter and 10 mm long) is coupled to a 5 m long optical fiber. Scintillation photons are guided to a polychromatic photodiode which provides an electrical current proportional to the input light signal. If the incident energy spectrum is known, the dose measured in the PSD's polystyrene sensitive volume can be converted to score dose in any other media such as air, water or soft tissues using the large cavity theory (LCT). A software simulating x-ray tube spectra and filtration has been benchmarked and is used for analysis. The method is confirmed by Monte Carlo simulations. PSDs cannot be assumed energy independent with low-energy photons as a factor 2 has been observed in the energy response between 80 kVp and 150 kVp. When the dose is converted to the desired medium, the PSD's energy dependence is compensated and a 2.1% standard deviation was observed upon the studied energy ranges, which is inside the measurement and calculation uncertainties. Percent depth dose (PDD) measurements are in good agreement with Monte Carlo simulations and results can be improved if the proposed method is applied to compensate beam hardening. PSDs present great potential for real-time dose measurements with radiologic photon energy.

收起

展开

DOI:

10.1118/1.4740214

被引量:

0

年份:

2012

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(92)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读