Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system.

来自 PUBMED

作者:

Jia YKhanal SKZhang HChen GHLu H

展开

摘要:

Sulfamethoxazole (SMX) is one of the most commonly used antibiotics. SMX degradation in sulfate-reducing bacteria (SRB) sludge systems has not been reported so far. This research investigated the SMX degradation using SRB sludge in a sulfate-reducing up-flow sludge bed reactor. Moreover, the mechanisms and kinetics of SMX removal were also investigated using SRB sludge via a series of batch experiments. The results showed that SMX removal was characterized by a rapid sorption onto SRB sludge, and desorption from SRB sludge to aqueous phase until achieving equilibrium, and then followed by slow biodegradation. Biodegradation was the dominant route for SMX removal. The sorption process conformed well to a pseudo-second-order kinetic model, meaning that the sorption occurred primarily via a chemical sorption process. The removal of SMX followed the pseudo-zero-order kinetic model with a specific removal rate of 13.2 ± 0.1 μg/L/d at initial SMX concentration 100 μg/L in batch tests. Based on the analysis of metabolites, most of the SMX biotransformation products' structures altered in the isoxazole ring, which were significantly different from that produced by aerobic and anaerobic sludge systems. Thus, SRB sludge system could play an important role in SMX biodegradation, especially in Sulfate-reduction Autotrophic denitrification and Nitrification Integrated (SANI) process for sewage treatment.

收起

展开

DOI:

10.1016/j.watres.2017.04.040

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(261)

参考文献(0)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读