Modification of cytokine-induced killer cells with folate receptor alpha (FRα)-specific chimeric antigen receptors enhances their antitumor immunity toward FRα-positive ovarian cancers.

来自 PUBMED

作者:

Zuo SWen YPanha HDai GWang LRen XFu K

展开

摘要:

Folate receptor alpha (FRα) is aberrantly expressed in ovarian cancers but largely absent in normal tissues, and therefore represents an attractive target for immunotherapy. In recent years, modification of T cells with chimeric antigen receptor (CAR) targeting FRα has been reported to improve antitumor immunity of T cells. However, there are limited data regarding CAR-modified cytokine-induced killer (CAR-CIK) cells. In the present study, we modified CIK cells with FRα-specific CARs and investigated their antitumor immunity against ovarian cancers. We found that both non-transduced and mock CAR-transduced CIK cells showed only low antitumor activity against either FRα-positive (FRα+) or FRα-negative (FRα-) targets. However, all three generations of CAR-modified CIK cells showed enhanced antitumor activity against FRα+ targets, but not FRα- targets. First-generation ζ-CAR-CIK cells increased production of IFN-γ, enhanced short-term cytotoxicity against FRα+ ovarian cancer cells, and showed modest and short-term suppression of established tumors; while second-generation 28ζ- and third-generation 28BBζ-CAR-CIK cells showed significant proliferation, enhanced secretion of IL-2, eliminated the FRα+ ovarian cancer cells in long-term co-culture, and showed dramatic and long-term inhibition of tumor growth and prolonged survival of xenograft-bearing mice. It is noteworthy that the 28BBζ-CAR was more potent in the modification of CIK cells than 28ζ-CAR both in vitro and in vivo. Moreover, CAR-CIK cells showed more efficient anticancer activity compared with CAR-T cells in vitro, but less efficient than CAR-T cells in vivo. According to these results, we conclude that modification of CIK cells with FRα-specific CARs enhances their antitumor immunity to FRα+ ovarian cancers. The third-generation 28BB-ζ CAR containing 4-1BB co-stimulation was more efficient in modification of CIK cells than either first-generation ζ-CAR or second-generation CD28-ζ-CAR.

收起

展开

DOI:

10.1016/j.molimm.2017.03.017

被引量:

23

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(685)

参考文献(0)

引证文献(23)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读