-
Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices.
Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown.
The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities.
A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE).
For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not significantly different at vigorous (P=.70) or recovery (P=.10). For Garmin Forerunner 225, HR MAPE was between 7.87% and 24.38%. HR was not significantly different at vigorous intensity (P=.35). The device measured higher HR readings at start, baseline, light intensity, moderate intensity (P<.001), and recovery (P=.04). EE MAPE was between 30.77% and 155.05%. The device measured higher EE at all stages (P<.001).
This study provides one of the first validation assessments for the Fitbit Charge HR, Apple Watch, and Garmin Forerunner 225. An advantage and novel approach of the study is the examination of HR and EE at specific physical activity intensities. Establishing validity of wearable devices is of particular interest as these devices are being used in weight loss interventions and could impact findings. Future research should investigate why differences between exercise intensities and the devices exist.
Dooley EE
,Golaszewski NM
,Bartholomew JB
《JMIR mHealth and uHealth》
-
Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.
Boudreaux BD
,Hebert EP
,Hollander DB
,Williams BM
,Cormier CL
,Naquin MR
,Gillan WW
,Gusew EE
,Kraemer RR
... -
《-》
-
Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study.
Physical activity reduces the incidences of noncommunicable diseases, obesity, and mortality, but an inactive lifestyle is becoming increasingly common. Innovative approaches to monitor and promote physical activity are warranted. While individual monitoring of physical activity aids in the design of effective interventions to enhance physical activity, a basic prerequisite is that the monitoring devices exhibit high validity.
Our goal was to assess the validity of monitoring heart rate (HR) and energy expenditure (EE) while sitting or performing light-to-vigorous physical activity with 4 popular wrist-worn wearables (Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa).
While wearing the 4 different wearables, 25 individuals performed 5 minutes each of sitting, walking, and running at different velocities (ie, 1.1 m/s, 1.9 m/s, 2.7 m/s, 3.6 m/s, and 4.1 m/s), as well as intermittent sprints. HR and EE were compared to common criterion measures: Polar-H7 chest belt for HR and indirect calorimetry for EE.
While monitoring HR at different exercise intensities, the standardized typical errors of the estimates were 0.09-0.62, 0.13-0.88, 0.62-1.24, and 0.47-1.94 for the Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, respectively. Depending on exercise intensity, the corresponding coefficients of variation were 0.9%-4.3%, 2.2%-6.7%, 2.9%-9.2%, and 4.1%-19.1%, respectively, for the 4 wearables. While monitoring EE at different exercise intensities, the standardized typical errors of the estimates were 0.34-1.84, 0.32-1.33, 0.46-4.86, and 0.41-1.65 for the Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, respectively. Depending on exercise intensity, the corresponding coefficients of variation were 13.5%-27.1%, 16.3%-28.0%, 15.9%-34.5%, and 8.0%-32.3%, respectively.
The Apple Watch Series 4 provides the highest validity (ie, smallest error rates) when measuring HR while sitting or performing light-to-vigorous physical activity, followed by the Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, in that order. The Apple Watch Series 4 and Polar Vantage V are suitable for valid HR measurements at the intensities tested, but HR data provided by the Garmin Fenix 5 and Fitbit Versa should be interpreted with caution due to higher error rates at certain intensities. None of the 4 wrist-worn wearables should be employed to monitor EE at the intensities and durations tested.
Düking P
,Giessing L
,Frenkel MO
,Koehler K
,Holmberg HC
,Sperlich B
... -
《JMIR mHealth and uHealth》
-
Accuracy of Wrist-Worn Activity Monitors During Common Daily Physical Activities and Types of Structured Exercise: Evaluation Study.
Wrist-worn activity monitors are often used to monitor heart rate (HR) and energy expenditure (EE) in a variety of settings including more recently in medical applications. The use of real-time physiological signals to inform medical systems including drug delivery systems and decision support systems will depend on the accuracy of the signals being measured, including accuracy of HR and EE. Prior studies assessed accuracy of wearables only during steady-state aerobic exercise.
The objective of this study was to validate the accuracy of both HR and EE for 2 common wrist-worn devices during a variety of dynamic activities that represent various physical activities associated with daily living including structured exercise.
We assessed the accuracy of both HR and EE for two common wrist-worn devices (Fitbit Charge 2 and Garmin vívosmart HR+) during dynamic activities. Over a 2-day period, 20 healthy adults (age: mean 27.5 [SD 6.0] years; body mass index: mean 22.5 [SD 2.3] kg/m2; 11 females) performed a maximal oxygen uptake test, free-weight resistance circuit, interval training session, and activities of daily living. Validity was assessed using an HR chest strap (Polar) and portable indirect calorimetry (Cosmed). Accuracy of the commercial wearables versus research-grade standards was determined using Bland-Altman analysis, correlational analysis, and error bias.
Fitbit and Garmin were reasonably accurate at measuring HR but with an overall negative bias. There was more error observed during high-intensity activities when there was a lack of repetitive wrist motion and when the exercise mode indicator was not used. The Garmin estimated HR with a mean relative error (RE, %) of -3.3% (SD 16.7), whereas Fitbit estimated HR with an RE of -4.7% (SD 19.6) across all activities. The highest error was observed during high-intensity intervals on bike (Fitbit: -11.4% [SD 35.7]; Garmin: -14.3% [SD 20.5]) and lowest error during high-intensity intervals on treadmill (Fitbit: -1.7% [SD 11.5]; Garmin: -0.5% [SD 9.4]). Fitbit and Garmin EE estimates differed significantly, with Garmin having less negative bias (Fitbit: -19.3% [SD 28.9], Garmin: -1.6% [SD 30.6], P<.001) across all activities, and with both correlating poorly with indirect calorimetry measures.
Two common wrist-worn devices (Fitbit Charge 2 and Garmin vívosmart HR+) show good HR accuracy, with a small negative bias, and reasonable EE estimates during low to moderate-intensity exercise and during a variety of common daily activities and exercise. Accuracy was compromised markedly when the activity indicator was not used on the watch or when activities involving less wrist motion such as cycle ergometry were done.
Reddy RK
,Pooni R
,Zaharieva DP
,Senf B
,El Youssef J
,Dassau E
,Doyle Iii FJ
,Clements MA
,Rickels MR
,Patton SR
,Castle JR
,Riddell MC
,Jacobs PG
... -
《JMIR mHealth and uHealth》
-
Accuracy of Apple Watch Measurements for Heart Rate and Energy Expenditure in Patients With Cardiovascular Disease: Cross-Sectional Study.
Wrist-worn tracking devices such as the Apple Watch are becoming more integrated in health care. However, validation studies of these consumer devices remain scarce.
This study aimed to assess if mobile health technology can be used for monitoring home-based exercise in future cardiac rehabilitation programs. The purpose was to determine the accuracy of the Apple Watch in measuring heart rate (HR) and estimating energy expenditure (EE) during a cardiopulmonary exercise test (CPET) in patients with cardiovascular disease.
Forty patients (mean age 61.9 [SD 15.2] yrs, 80% male) with cardiovascular disease (70% ischemic, 22.5% valvular, 7.5% other) completed a graded maximal CPET on a cycle ergometer while wearing an Apple Watch. A 12-lead electrocardiogram (ECG) was used to measure HR; indirect calorimetry was used for EE. HR was analyzed at three levels of intensity (seated rest, HR1; moderate intensity, HR2; maximal performance, HR3) for 30 seconds. The EE of the entire test was used. Bias or mean difference (MD), standard deviation of difference (SDD), limits of agreement (LoA), mean absolute error (MAE), mean absolute percentage error (MAPE), and intraclass correlation coefficients (ICCs) were calculated. Bland-Altman plots and scatterplots were constructed.
SDD for HR1, HR2, and HR3 was 12.4, 16.2, and 12.0 bpm, respectively. Bias and LoA (lower, upper LoA) were 3.61 (-20.74, 27.96) for HR1, 0.91 (-30.82, 32.63) for HR2, and -1.82 (-25.27, 21.63) for HR3. MAE was 6.34 for HR1, 7.55 for HR2, and 6.90 for HR3. MAPE was 10.69% for HR1, 9.20% for HR2, and 6.33% for HR3. ICC was 0.729 (P<.001) for HR1, 0.828 (P<.001) for HR2, and 0.958 (P<.001) for HR3. Bland-Altman plots and scatterplots showed good correlation without systematic error when comparing Apple Watch with ECG measurements. SDD for EE was 17.5 kcal. Bias and LoA were 30.47 (-3.80, 64.74). MAE was 30.77; MAPE was 114.72%. ICC for EE was 0.797 (P<.001). The Bland-Altman plot and a scatterplot directly comparing Apple Watch and indirect calorimetry showed systematic bias with an overestimation of EE by the Apple Watch.
In patients with cardiovascular disease, the Apple Watch measures HR with clinically acceptable accuracy during exercise. If confirmed, it might be considered safe to incorporate the Apple Watch in HR-guided training programs in the setting of cardiac rehabilitation. At this moment, however, it is too early to recommend the Apple Watch for cardiac rehabilitation. Also, the Apple Watch systematically overestimates EE in this group of patients. Caution might therefore be warranted when using the Apple Watch for measuring EE.
Falter M
,Budts W
,Goetschalckx K
,Cornelissen V
,Buys R
... -
《JMIR mHealth and uHealth》